File: demos.lib

package info (click to toggle)
faust 2.79.3%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 397,496 kB
  • sloc: cpp: 278,433; ansic: 116,164; javascript: 18,529; vhdl: 14,052; sh: 13,884; java: 5,900; objc: 3,852; python: 3,222; makefile: 2,655; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 110; tcl: 26
file content (1860 lines) | stat: -rw-r--r-- 79,777 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
//#################################### demos.lib ##########################################
// This library contains a set of demo functions based on examples located in the
// `/examples` folder. Its official prefix is `dm`.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/demos.lib>
//########################################################################################

/************************************************************************
************************************************************************
FAUST library file, GRAME section

Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/

ma = library("maths.lib");
ba = library("basics.lib");
de = library("delays.lib");
si = library("signals.lib");
an = library("analyzers.lib");
fi = library("filters.lib");
os = library("oscillators.lib");
no = library("noises.lib");
ef = library("misceffects.lib");
co = library("compressors.lib");
ve = library("vaeffects.lib");
pf = library("phaflangers.lib");
re = library("reverbs.lib");
en = library("envelopes.lib");
it = library("interpolators.lib");
aa = library("aanl.lib");
sp = library("spats.lib");

declare name "Faust Demos Library";
declare version "1.2.0";

//########################################################################################
/************************************************************************
FAUST library file, jos section

Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.

MarkDown comments in this section are Copyright 2016-2019 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees!)

************************************************************************/

//====================================Analyzers===========================================
//========================================================================================

//----------------------`(dm.)mth_octave_spectral_level_demo`----------------------
// Demonstrate mth_octave_spectral_level in a standalone GUI.
//
// #### Usage
// ```
// _ : mth_octave_spectral_level_demo(BandsPerOctave) : _
// _ : spectral_level_demo : _ // 2/3 octave
// ```
//------------------------------------------------------------
declare mth_octave_spectral_level_demo author "Julius O. Smith III and Yann Orlarey";
declare mth_octave_spectral_level_demo licence "MIT";

mth_octave_spectral_level_demo(BPO) =  an.mth_octave_spectral_level_default(M,ftop,N,tau,dB_offset)
with{
    M = BPO;
    ftop = 16000;
    Noct = 10; // number of octaves down from ftop
    // Lowest band-edge is at ftop*2^(-Noct+2) = 62.5 Hz when ftop=16 kHz:
    N = int(Noct*M); // without 'int()', segmentation fault observed for M=1.67
    ctl_group(x)  = hgroup("[1] SPECTRUM ANALYZER CONTROLS", x);
    tau = ctl_group(hslider("[0] Level Averaging Time [unit:ms] [scale:log]
        [tooltip: band-level averaging time in milliseconds]",
    100,1,10000,1)) * 0.001;
    dB_offset = ctl_group(hslider("[1] Level dB Offset [unit:dB]
    [tooltip: Level offset in decibels]",
    50,-50,100,1));
};

spectral_level_demo = mth_octave_spectral_level_demo(1.5); // 2/3 octave


//======================================Filters===========================================
//========================================================================================

//--------------------------`(dm.)parametric_eq_demo`------------------------------
// A parametric equalizer application.
//
// #### Usage:
//
// ```
// _ : parametric_eq_demo : _
// ```
//------------------------------------------------------------
declare parametric_eq_demo author "Julius O. Smith III";
declare parametric_eq_demo licence "MIT";

parametric_eq_demo = fi.low_shelf(LL,FL) : fi.peak_eq(LP,FP,BP) : fi.high_shelf(LH,FH)
with{
    eq_group(x) = hgroup("[0] PARAMETRIC EQ SECTIONS [tooltip: See Faust's filters.lib
        for info and pointers]",x);
    ls_group(x) = eq_group(vgroup("[1] Low Shelf",x));

    LL = ls_group(hslider("[0] Low Boost|Cut [unit:dB] [style:knob]
        [tooltip: Amount of low-frequency boost or cut in decibels]",0,-40,40,0.1));
    FL = ls_group(hslider("[1] Transition Frequency [unit:Hz] [style:knob] [scale:log]
        [tooltip: Transition-frequency from boost (cut) to unity gain]",200,1,5000,1));

    pq_group(x) = eq_group(vgroup("[2] Peaking Equalizer[tooltip: Parametric Equalizer
        sections from filters.lib]",x));
    LP = pq_group(hslider("[0] Peak Boost|Cut [unit:dB] [style:knob][tooltip: Amount of
        local boost or cut in decibels]",0,-40,40,0.1));
    FP = pq_group(hslider("[1] Peak Frequency [unit:PK] [style:knob] [tooltip: Peak
        Frequency in Piano Key (PK) units (A440 = 49PK)]",49,1,100,1)) : si.smooth(0.999)
        : ba.pianokey2hz;
    Q = pq_group(hslider("[2] Peak Q [style:knob] [scale:log] [tooltip: Quality factor
        (Q) of the peak = center-frequency/bandwidth]",40,1,1000,0.1));

    BP = FP/Q;

    hs_group(x) = eq_group(vgroup("[3] High Shelf [tooltip: A high shelf provides a boost
        or cut above some frequency]",x));
    LH = hs_group(hslider("[0] High Boost|Cut [unit:dB] [style:knob] [tooltip: Amount of
        high-frequency boost or cut in decibels]",0,-40,40,.1));
    FH = hs_group(hslider("[1] Transition Frequency [unit:Hz] [style:knob] [scale:log]
    [tooltip: Transition-frequency from boost (cut) to unity gain]",8000,20,10000,1));
};


//-------------------`(dm.)spectral_tilt_demo`-----------------------
// A spectral tilt application.
//
// #### Usage
//
// ```
// _ : spectral_tilt_demo(N) : _ 
// ```
//
// Where:
//
// * `N`: filter order (integer)
//
// All other parameters interactive
//------------------------------------------------------------
declare spectral_tilt_demo author "Julius O. Smith III";
declare spectral_tilt_demo licence "MIT";

spectral_tilt_demo(N) = fi.spectral_tilt(O,f0,bw,alpha)
with{
    O = N;
    alpha = hslider("[1] Slope of Spectral Tilt across Band",-1/2,-1,1,0.001);
    f0 = hslider("[2] Band Start Frequency [unit:Hz]",100,20,10000,1);
    bw = hslider("[3] Band Width [unit:Hz]",5000,100,10000,1);
};


//---------`(dm.)mth_octave_filterbank_demo` and `(dm.)filterbank_demo`-------------
// Graphic Equalizer: each filter-bank output signal routes through a fader.
//
// #### Usage
//
// ```
// _ : mth_octave_filterbank_demo(M) : _
// _ : filterbank_demo : _
// ```
//
// Where:
//
// * `M`: number of bands per octave
//--------------------------------------------------------------
declare mth_octave_filterbank_demo author "Julius O. Smith III";
declare mth_octave_filterbank_demo licence "MIT";

mth_octave_filterbank_demo(O) = bp1(bp,mthoctavefilterbankdemo)
with{
    M = O;
    bp1 = ba.bypass1;
    mofb_group(x) = vgroup("CONSTANT-Q FILTER BANK (Butterworth dyadic tree)
        [tooltip: See Faust's filters.lib for documentation and references]", x);
    bypass_group(x) = mofb_group(hgroup("[0]", x));
    slider_group(x) = mofb_group(hgroup("[1]", x));

    N = 10*M; // total number of bands (highpass band, octave-bands, dc band)
    ftop = 10000;
    mthoctavefilterbankdemo = chan;
    chan = fi.mth_octave_filterbank_default(M,ftop,N) : sum(i,N,(*(ba.db2linear(fader(N-i)))));
    fader(i) = slider_group(vslider("Band%2i [unit:dB] [tooltip: Bandpass filter
        gain in dB]", -10, -70, 10, 0.1)) : si.smoo;
    bp = bypass_group(checkbox("[0] Bypass
        [tooltip: When this is checked, the filter-bank has no effect]"));
};

filterbank_demo = mth_octave_filterbank_demo(1); // octave-bands = default


//======================================Effects===========================================
//========================================================================================

//---------------------------`(dm.)cubicnl_demo`--------------------------
// Distortion demo application.
//
// #### Usage:
//
// ```
// _ : cubicnl_demo : _
// ```
//------------------------------------------------------------
declare cubicnl_demo author "Julius O. Smith III";
declare cubicnl_demo licence "MIT";

cubicnl_demo = ba.bypass1(bp, ef.cubicnl_nodc(drive:si.smoo,offset:si.smoo))
with{
    cnl_group(x)  = vgroup("CUBIC NONLINEARITY cubicnl [tooltip: Reference:
        https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html]", x);
    bp = cnl_group(checkbox("[0] Bypass [tooltip: When this is checked, the
        nonlinearity has no effect]"));
    drive = cnl_group(hslider("[1] Drive [tooltip: Amount of distortion]",
        0, 0, 1, 0.01));
    offset = cnl_group(hslider("[2] Offset [tooltip: Brings in even harmonics]",
        0, 0, 1, 0.01));
};


//----------------------------`(dm.)gate_demo`-------------------------
// Gate demo application.
//
// #### Usage
//
// ```
// _,_ : gate_demo : _,_
// ```
//------------------------------------------------------------
declare gate_demo author "Julius O. Smith III";
declare gate_demo licence "MIT";

gate_demo = ba.bypass2(gbp,gate_stereo_demo)
with{
    gate_group(x) = vgroup("GATE  [tooltip: Reference:
        http://en.wikipedia.org/wiki/Noise_gate]", x);
    meter_group(x) = gate_group(hgroup("[0]", x));
    knob_group(x) = gate_group(hgroup("[1]", x));

    gbp = meter_group(checkbox("[0] Bypass    [tooltip: When this is checked,
        the gate has no effect]"));

    gateview = ef.gate_gain_mono(gatethr,gateatt,gatehold,gaterel) : ba.linear2db :
    meter_group(hbargraph("[1] Gate Gain [unit:dB] [tooltip: Current gain of the
    gate in dB]", -50,+10)); // [style:led]

    gate_stereo_demo(x,y) = attach(x,gateview(abs(x)+abs(y))),y :
    ef.gate_stereo(gatethr,gateatt,gatehold,gaterel);

    gatethr = knob_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip: When
        the signal level falls below the Threshold (expressed in dB), the signal is
        muted]", -30, -120, 0, 0.1));

    gateatt = knob_group(hslider("[2] Attack [unit:us] [style:knob] [scale:log]
    [tooltip: Time constant in MICROseconds (1/e smoothing time) for the gate
    gain to go (exponentially) from 0 (muted) to 1 (unmuted)]",
    10, 10, 10000, 1)) : *(0.000001) : max(1.0/float(ma.SR));

    gatehold = knob_group(hslider("[3] Hold [unit:ms] [style:knob] [scale:log]
    [tooltip: Time in ms to keep the gate open (no muting) after the signal
    level falls below the Threshold]", 200, 1, 1000, 1)) : *(0.001) :
    max(1.0/float(ma.SR));

    gaterel = knob_group(hslider("[4] Release [unit:ms] [style:knob] [scale:log]
    [tooltip: Time constant in ms (1/e smoothing time) for the gain to go
    (exponentially) from 1 (unmuted) to 0 (muted)]",
    100, 1, 1000, 1)) : *(0.001) : max(1.0/float(ma.SR));
};


//----------------------------`(dm.)compressor_demo`-------------------------
// Compressor demo application.
//
// #### Usage
//
// ```
// _,_ : compressor_demo : _,_
// ```
//------------------------------------------------------------
declare compressor_demo author "Julius O. Smith III";
declare compressor_demo licence "MIT";

compressor_demo = ba.bypass2(cbp,compressor_stereo_demo)
with{
    comp_group(x) = vgroup("COMPRESSOR [tooltip: Reference:
        http://en.wikipedia.org/wiki/Dynamic_range_compression]", x);

    meter_group(x) = comp_group(hgroup("[0]", x));
    knob_group(x) = comp_group(hgroup("[1]", x));

    cbp = meter_group(checkbox("[0] Bypass    [tooltip: When this is checked, the compressor
        has no effect]"));
    gainview = co.compression_gain_mono(ratio,threshold,attack,release) : ba.linear2db :
    meter_group(hbargraph("[1] Compressor Gain Before Makeup [unit:dB] [tooltip: Current gain of
    the compressor in dB]",-50,+10));

    displaygain = _,_ <: _,_,(abs,abs:+) : _,_,gainview : _,attach;

    compressor_stereo_demo =
    displaygain(co.compressor_stereo(ratio,threshold,attack,release)) :
    *(makeupgain), *(makeupgain);

    ctl_group(x) = knob_group(hgroup("[3] Compression Control", x));

    ratio = ctl_group(hslider("[0] Ratio [style:knob]
    [tooltip: A compression Ratio of N means that for each N dB increase in input
    signal level above Threshold, the output level goes up 1 dB]",
    5, 1, 20, 0.1));

    threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob]
    [tooltip: When the signal level exceeds the Threshold (in dB), its level
    is compressed according to the Ratio]",
    -30, -100, 10, 0.1));

    env_group(x) = knob_group(hgroup("[4] Compression Response", x));

    attack = env_group(hslider("[1] Attack [unit:ms] [style:knob] [scale:log]
    [tooltip: Time constant in ms (1/e smoothing time) for the compression gain
    to approach (exponentially) a new lower target level (the compression
    `kicking in')]", 50, 1, 1000, 0.1)) : *(0.001) : max(1/ma.SR);

    release = env_group(hslider("[2] Release [unit:ms] [style: knob] [scale:log]
    [tooltip: Time constant in ms (1/e smoothing time) for the compression gain
    to approach (exponentially) a new higher target level (the compression
    'releasing')]", 500, 1, 1000, 0.1)) : *(0.001) : max(1/ma.SR);

    makeupgain = comp_group(hslider("[5] Makeup Gain [unit:dB]
    [tooltip: The compressed-signal output level is increased by this amount
    (in dB) to make up for the level lost due to compression]",
    40, -96, 96, 0.1)) : ba.db2linear;
};


//-------------------------`(dm.)moog_vcf_demo`---------------------------
// Illustrate and compare all three Moog VCF implementations above.
//
// #### Usage
//
// ```
// _ : moog_vcf_demo : _
// ```
//------------------------------------------------------------
declare moog_vcf_demo author "Julius O. Smith III";
declare moog_vcf_demo licence "MIT";

moog_vcf_demo = ba.bypass1(bp,vcf)
with{
    mvcf_group(x) = hgroup("MOOG VCF (Voltage Controlled Filter) [tooltip: See Faust's
        vaeffects.lib for info and references]",x);
    cb_group(x) = mvcf_group(hgroup("[0]",x));

    bp = cb_group(checkbox("[0] Bypass  [tooltip: When this is checked, the Moog VCF
        has no effect]"));
    archsw = cb_group(checkbox("[1] Use Biquads [tooltip: Select moog_vcf_2b (two-biquad)
        implementation, instead of the default moog_vcf (analog style) implementation]"));
    bqsw = cb_group(checkbox("[2] Normalized Ladders [tooltip: If using biquads, make
        them normalized ladders (moog_vcf_2bn)]"));

    freq = mvcf_group(hslider("[1] Corner Frequency [unit:PK] [tooltip: The VCF resonates
        at the corner frequency (specified in PianoKey (PK) units, with A440 = 49 PK).
        The VCF response is flat below the corner frequency, and rolls off -24 dB per
        octave above.]",
        25, 1, 88, 0.01) : ba.pianokey2hz) : si.smoo;

    res = mvcf_group(hslider("[2] Corner Resonance [style:knob] [tooltip: Amount of
        resonance near VCF corner frequency (specified between 0 and 1)]", 0.9, 0, 1, 0.01));

    outgain = mvcf_group(hslider("[3] VCF Output Level [unit:dB] [style:knob] [tooltip:
        output level in decibels]", 5, -60, 20, 0.1)) : ba.db2linear : si.smoo;

    vcfbq = _ <: select2(bqsw, ve.moog_vcf_2b(res,freq), ve.moog_vcf_2bn(res,freq));
    vcfarch = _ <: select2(archsw, ve.moog_vcf(res^4,freq), vcfbq);
    vcf = vcfarch : *(outgain);
};


//-------------------------`(dm.)wah4_demo`---------------------------
// Wah pedal application.
//
// #### Usage
//
// ```
// _ : wah4_demo : _
// ```
//------------------------------------------------------------
declare wah4_demo author "Julius O. Smith III";
declare wah4_demo licence "MIT";

wah4_demo = ba.bypass1(bp, ve.wah4(fr))
with{
    wah4_group(x) = hgroup("WAH4 [tooltip: Fourth-order wah effect made using moog_vcf]", x);
    bp = wah4_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah pedal has
        no effect]"));
    fr = wah4_group(hslider("[1] Resonance Frequency [scale:log] [tooltip: wah resonance
        frequency in Hz]", 200,100,2000,1));
    // Avoid dc with the moog_vcf (amplitude too high when freq comes up from dc)
    // Also, avoid very high resonance frequencies (e.g., 5kHz or above).
};

//-------------------------`(dm.)crybaby_demo`---------------------------
// Crybaby effect application.
//
// #### Usage
//
// ```
// _ : crybaby_demo : _
// ```
//------------------------------------------------------------
declare crybaby_demo author "Julius O. Smith III";
declare crybaby_demo licence "MIT";

crybaby_demo = ba.bypass1(bp, ve.crybaby(wah))
with{
    crybaby_group(x) = hgroup("CRYBABY [tooltip: Reference:
        https://ccrma.stanford.edu/~jos/pasp/vegf.html]", x);
    bp = crybaby_group(checkbox("[0] Bypass [tooltip: When this is checked, the wah
        pedal has no effect]"));
    wah = crybaby_group(hslider("[1] Wah parameter [tooltip: wah pedal angle between
        0 (rocked back) and 1 (rocked forward)]",0.8,0,1,0.01));
};

//-------------------------`(dm.)flanger_demo`---------------------------
// Flanger effect application.
//
// #### Usage
//
// ```
// _,_ : flanger_demo : _,_
// ```
//------------------------------------------------------------
declare flanger_demo author "Julius O. Smith III";
declare flanger_demo licence "MIT";

flanger_demo = ba.bypass2(fbp,flanger_stereo_demo)
with{
    flanger_group(x) = vgroup("FLANGER
        [tooltip: Reference: https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
    meter_group(x) = flanger_group(hgroup("[0]", x));
    ctl_group(x) = flanger_group(hgroup("[1]", x));
    del_group(x) = flanger_group(hgroup("[2] Delay Controls", x));
    lvl_group(x) = flanger_group(hgroup("[3]", x));

    fbp = meter_group(checkbox("[0] Bypass    [tooltip: When this is checked, the flanger
        has no effect]"));
    invert = meter_group(checkbox("[1] Invert Flange Sum"));

    // FIXME: This should be an amplitude-response display:
    flangeview = lfor(freq) + lfol(freq) : meter_group(hbargraph("[2] Flange LFO
        [style: led] [tooltip: Display sum of flange delays]", -1.5,+1.5));

    flanger_stereo_demo(x,y) = attach(x,flangeview),y :
        *(level),*(level) : pf.flanger_stereo(dmax,curdel1,curdel2,depth,fb,invert);

    lfol = os.oscrs;
    lfor = os.oscrc;

    dmax = 2048;
    dflange = 0.001 * ma.SR *
        del_group(hslider("[1] Flange Delay [unit:ms] [style:knob]", 10, 0, 20, 0.001));
    odflange = 0.001 * ma.SR *
    del_group(hslider("[2] Delay Offset [unit:ms] [style:knob]", 1, 0, 20, 0.001));
    freq   = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.01));
    depth  = ctl_group(hslider("[2] Depth [style:knob]", 1, 0, 1, 0.001));
    fb     = ctl_group(hslider("[3] Feedback [style:knob]", 0, -0.999, 0.999, 0.001));
    level  = lvl_group(hslider("Flanger Output Level [unit:dB]", 0, -60, 10, 0.1)) :
        ba.db2linear;
    curdel1 = odflange+dflange*(1 + lfol(freq))/2;
    curdel2 = odflange+dflange*(1 + lfor(freq))/2;
};


//-------------------------`(dm.)phaser2_demo`---------------------------
// Phaser effect demo application.
//
// #### Usage
//
// ```
// _,_ : phaser2_demo : _,_
// ```
//------------------------------------------------------------
declare phaser2_demo author "Julius O. Smith III";
declare phaser2_demo licence "MIT";

phaser2_demo = ba.bypass2(pbp,phaser2_stereo_demo)
with{
    phaser2_group(x) = vgroup("PHASER2 [tooltip: Reference:
        https://ccrma.stanford.edu/~jos/pasp/Flanging.html]", x);
    meter_group(x) = phaser2_group(hgroup("[0]", x));
    ctl_group(x) = phaser2_group(hgroup("[1]", x));
    nch_group(x) = phaser2_group(hgroup("[2]", x));
    lvl_group(x) = phaser2_group(hgroup("[3]", x));

    pbp = meter_group(checkbox("[0] Bypass    [tooltip: When this is checked, the phaser
        has no effect]"));
    invert = meter_group(checkbox("[1] Invert Internal Phaser Sum"));
    vibr = meter_group(checkbox("[2] Vibrato Mode")); // In this mode you can hear any "Doppler"

    // FIXME: This should be an amplitude-response display:
    // flangeview = phaser2_amp_resp : meter_group(hspectrumview("[2] Phaser Amplitude Response", 0,1));
    // phaser2_stereo_demo(x,y) = attach(x,flangeview),y : ...

    phaser2_stereo_demo = *(level),*(level) :
        pf.phaser2_stereo(Notches,width,frqmin,fratio,frqmax,speed,mdepth,fb,invert);

    Notches = 4; // Compile-time parameter: 2 is typical for analog phaser stomp-boxes

    // FIXME: Add tooltips
    speed  = ctl_group(hslider("[1] Speed [unit:Hz] [style:knob]", 0.5, 0, 10, 0.001));
    depth = ctl_group(hslider("[2] Notch Depth (Intensity) [style:knob]", 1, 0, 1, 0.001));
    fb  = ctl_group(hslider("[3] Feedback Gain [style:knob]", 0, -0.999, 0.999, 0.001));

    width  = nch_group(hslider("[1] Notch width [unit:Hz] [style:knob] [scale:log]",
        1000, 10, 5000, 1));
    frqmin = nch_group(hslider("[2] Min Notch1 Freq [unit:Hz] [style:knob] [scale:log]",
        100, 20, 5000, 1));
    frqmax = nch_group(hslider("[3] Max Notch1 Freq [unit:Hz] [style:knob] [scale:log]",
        800, 20, 10000, 1)) : max(frqmin);
    fratio = nch_group(hslider("[4] Notch Freq Ratio: NotchFreq(n+1)/NotchFreq(n) [style:knob]",
        1.5, 1.1, 4, 0.001));

    level  = lvl_group(hslider("Phaser Output Level [unit:dB]", 0, -60, 10, 0.1)) :
        ba.db2linear;

    mdepth = select2(vibr,depth,2); // Improve "ease of use"
};

//-------------------------`(dm.)tapeStop_demo`---------------------------
// Stereo tape-stop effect.
//
// #### Usage
//
// ```
// _,_ : tapeStop_demo : _,_
// ```
//------------------------------------------------------------
declare tapeStop_demo author "David Braun";
declare tapeStop_demo copyright "Copyright (C) 2024 by David Braun <braun@ccrma.stanford.edu>";
declare tapeStop_demo license "MIT-style STK-4.3 license";

tapeStop_demo = hgroup("Tape Stop", ef.tapeStop(2, LAGRANGE_ORDER, MAX_TIME_SAMP, crossfade, gainAlpha, stopAlpha, stopTime, stop))
with {
    LAGRANGE_ORDER = 3;
    MAX_TIME_SEC = 4;
    MIN_TIME_SEC = 0.01;
    MIN_ALPHA = .01;
    MAX_ALPHA = 2;

    MAX_TIME_SAMP = MAX_TIME_SEC : ba.sec2samp;
    msec2samp = _/1000 : ba.sec2samp;

    stop = checkbox("[0] Stop");
    stopTime = hslider("[1] Stop Time [style:knob][unit:ms]", 100, MIN_TIME_SEC*1000, MAX_TIME_SEC*1000, 1) : msec2samp;
    stopAlpha = hslider("[2] Stop Alpha [style:knob][tooltip:Alpha==1 represents a linear deceleration (constant force). Alpha<1 represents an initially weaker, then stronger force. Alpha>1 represents an initially stronger, then weaker force.]", 1, MIN_ALPHA, MAX_ALPHA, .01);
    gainAlpha = hslider("[3] Gain Alpha [style:knob][tooltip:During the tape-stop, lower alpha stays louder longer]", 1, MIN_ALPHA, MAX_ALPHA, .01);
    crossfade = hslider("[4] Crossfade [style:knob][unit:ms][tooltip:Crossfade to apply when resuming normal playback.]", 3, 0, 125, 1) : msec2samp;
};

//======================================Reverbs===========================================
//========================================================================================

//----------------------------`(dm.)freeverb_demo`-------------------------
// Freeverb demo application.
//
// #### Usage
//
// ```
// _,_ : freeverb_demo : _,_
// ```
//------------------------------------------------------------
declare freeverb_demo author " Romain Michon";
declare freeverb_demo licence "LGPL";

freeverb_demo = _,_ <: (*(g)*fixedgain,*(g)*fixedgain :
    re.stereo_freeverb(combfeed, allpassfeed, damping, spatSpread)),
    *(1-g), *(1-g) :> _,_
with{
    scaleroom   = 0.28;
    offsetroom  = 0.7;
    allpassfeed = 0.5;
    scaledamp   = 0.4;
    fixedgain   = 0.1;
    origSR = 44100;

    parameters(x) = hgroup("Freeverb",x);
    knobGroup(x) = parameters(vgroup("[0]",x));
    damping = knobGroup(vslider("[0] Damp [style: knob] [tooltip: Somehow control the
        density of the reverb.]",0.5, 0, 1, 0.025)*scaledamp*origSR/ma.SR);
    combfeed = knobGroup(vslider("[1] RoomSize [style: knob] [tooltip: The room size
        between 0 and 1 with 1 for the largest room.]", 0.5, 0, 1, 0.025)*scaleroom*
        origSR/ma.SR + offsetroom);
    spatSpread = knobGroup(vslider("[2] Stereo Spread [style: knob] [tooltip: Spatial
        spread between 0 and 1 with 1 for maximum spread.]",0.5,0,1,0.01)*46*ma.SR/origSR
        : int);
    g = parameters(vslider("[1] Wet [tooltip: The amount of reverb applied to the signal
        between 0 and 1 with 1 for the maximum amount of reverb.]", 0.3333, 0, 1, 0.025));
};

//---------------------`(dm.)stereo_reverb_tester`--------------------
// Handy test inputs for reverberator demos below.
//
// #### Usage
//
// ```
// _,_ : stereo_reverb_tester(gui_group) : _,_
// ```
// For suppressing the `gui_group` input, pass it as `!`.
// (See `(dm.)fdnrev0_demo` for an example of its use).
//------------------------------------------------------------
declare stereo_reverb_tester author "Julius O. Smith III";
declare stereo_reverb_tester licence "MIT";

stereo_reverb_tester(revin_group,x,y) = reverb_tester(_,x,y)
with {
    reverb_tester(revin_group,x,y) = inx,iny with {
        ck_group(x) = revin_group(vgroup("[1] Input Config",x));
        mutegain = 1 - ck_group(checkbox("[1] Mute Ext Inputs
        [tooltip: When this is checked, the stereo external audio inputs are
        disabled (good for hearing the impulse response or pink-noise response alone)]"));
        pinkin = ck_group(checkbox("[2] Pink Noise
        [tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise (useful for adjusting
        the EQ sections)]"));

        imp_group(x) = revin_group(hgroup("[2] Impulse Selection",x));
        pulseL = imp_group(button("[1] Left
        [tooltip: Send impulse into LEFT channel]")) : ba.impulsify;
        pulseC = imp_group(button("[2] Center
        [tooltip: Send impulse into LEFT and RIGHT channels]")) : ba.impulsify;
        pulseR = imp_group(button("[3] Right
        [tooltip: Send impulse into RIGHT channel]")) : ba.impulsify;

        inx = x*mutegain + (pulseL+pulseC) + pn;
        iny = y*mutegain + (pulseR+pulseC) + pn;
        pn = 0.1*pinkin*no.pink_noise;
    };
};


//-------------------------`(dm.)fdnrev0_demo`---------------------------
// A reverb application using `fdnrev0`.
//
// #### Usage
//
// ```
// _,_,_,_ : fdnrev0_demo(N,NB,BBSO) : _,_
// ```
//
// Where:
//
// * `N`: feedback Delay Network (FDN) order / number of delay lines used =
//    order of feedback matrix / 2, 4, 8, or 16 [extend primes array below for
//    32, 64, ...]
// * `NB`: number of frequency bands / Number of (nearly) independent T60 controls
//    / Integer 3 or greater
// * `BBSO` : butterworth band-split order / order of lowpass/highpass bandsplit
//    used at each crossover freq / odd positive integer
//------------------------------------------------------------
declare fdnrev0_demo author "Julius O. Smith III";
declare fdnrev0_demo licence "MIT";

fdnrev0_demo(N,NB,BBSO) = stereo_reverb_tester(revin_group)
      <: re.fdnrev0(MAXDELAY,delays,BBSO,freqs,durs,loopgainmax,nonl)
      :> *(gain),*(gain)
with{
    MAXDELAY = 8192; // sync w delays and prime_power_delays above
    defdurs = (8.4,6.5,5.0,3.8,2.7); // NB default durations (sec)
    deffreqs = (500,1000,2000,4000); // NB-1 default crossover frequencies (Hz)
    deflens = (56.3,63.0); // 2 default min and max path lengths

    fdn_group(x) = vgroup("FEEDBACK DELAY NETWORK (FDN) REVERBERATOR, ORDER 16
    [tooltip: See Faust's reverbs.lib for documentation and references]", x);

    freq_group(x) = fdn_group(vgroup("[1] Band Crossover Frequencies", x));
    t60_group(x) = fdn_group(hgroup("[2] Band Decay Times (T60)", x));
    path_group(x) = fdn_group(vgroup("[3] Room Dimensions", x));
    revin_group(x) = fdn_group(hgroup("[4] Input Controls", x));
    nonl_group(x) = revin_group(vgroup("[4] Nonlinearity",x));
    quench_group(x) = revin_group(vgroup("[3] Reverb State",x));

    nonl = nonl_group(hslider("[style:knob] [tooltip: nonlinear mode coupling]",
        0, -0.999, 0.999, 0.001));
    loopgainmax = 1.0-0.5*quench_group(button("[1] Quench
        [tooltip: Hold down 'Quench' to clear the reverberator]"));

    pathmin = path_group(hslider("[1] min acoustic ray length [unit:m] [scale:log]
    [tooltip: This length (in meters) determines the shortest delay-line used in the FDN
    reverberator. Think of it as the shortest wall-to-wall separation in the room.]",
    46, 0.1, 63, 0.1));
    pathmax = path_group(hslider("[2] max acoustic ray length [unit:m] [scale:log]
        [tooltip: This length (in meters) determines the longest delay-line used in the
        FDN reverberator. Think of it as the largest wall-to-wall separation in the room.]",
    63, 0.1, 63, 0.1));

    durvals(i) = t60_group(vslider("[%i] %i [unit:s] [scale:log][tooltip: T60 is the 60dB
        decay-time in seconds. For concert halls, an overall reverberation time (T60) near
        1.9 seconds is typical [Beranek 2004]. Here we may set T60 independently in each
        frequency band. In real rooms, higher frequency bands generally decay faster due
        to absorption and scattering.]",ba.take(i+1,defdurs), 0.1, 100, 0.1));
    durs = par(i,NB,durvals(NB-1-i));

    freqvals(i) = freq_group(hslider("[%i] Band %i upper edge in Hz [unit:Hz] [scale:log]
    [tooltip: Each delay-line signal is split into frequency-bands for separate
    decay-time control in each band]",ba.take(i+1,deffreqs), 100, 10000, 1));
    freqs = par(i,NB-1,freqvals(i));

    delays = de.prime_power_delays(N,pathmin,pathmax);

    gain = hslider("[3] Output Level (dB) [unit:dB][tooltip: Output scale factor]",
        -40, -70, 20, 0.1) : ba.db2linear;
    // (can cause infinite loop:) with { db2linear(x) = pow(10, x/20.0); };
};

//---------------------------`(dm.)zita_rev_fdn_demo`------------------------------
// Reverb demo application based on `zita_rev_fdn`.
//
// #### Usage
//
// ```
// si.bus(8) : zita_rev_fdn_demo : si.bus(8)
// ```
//------------------------------------------------------------
declare zita_rev_fdn_demo author "Julius O. Smith III";
declare zita_rev_fdn_demo licence "MIT";

zita_rev_fdn_demo = re.zita_rev_fdn(f1,f2,t60dc,t60m,fsmax)
with{
    fsmax = 48000.0;
    fdn_group(x) = hgroup("Zita_Rev Internal FDN Reverb [tooltip: ~ Zita_Rev's internal
        8x8 Feedback Delay Network (FDN) & Schroeder allpass-comb reverberator.     See
        Faust's reverbs.lib for documentation and references]",x);
    t60dc = fdn_group(vslider("[1] Low RT60 [unit:s] [style:knob][style:knob]
    [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
    3, 1, 8, 0.1));
    f1 = fdn_group(vslider("[2] LF X [unit:Hz] [style:knob] [scale:log]
    [tooltip: Crossover frequency (Hz) separating low and middle frequencies]",
    200, 50, 1000, 1));
    t60m = fdn_group(vslider("[3] Mid RT60 [unit:s] [style:knob] [scale:log]
    [tooltip: T60 = time (in seconds) to decay 60dB in middle band]",
    2, 1, 8, 0.1));
    f2 = fdn_group(vslider("[4] HF Damping [unit:Hz] [style:knob] [scale:log]
    [tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
    6000, 1500, 0.49*fsmax, 1));
};

//---------------------------`(dm.)zita_light`------------------------------
// Light version of `dm.zita_rev1` with only 2 UI elements.
//
// #### Usage
//
// ```
// _,_ : zita_light : _,_
// ```
//------------------------------------------------------------
declare zita_light author "Julius O. Smith III";
declare zita_light licence "MIT";

zita_light = hgroup("Zita Light",(_,_ <: re.zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax),_,_ : 
    out_eq,_,_ : dry_wet : out_level))
with{
    fsmax = 48000.0;  // highest sampling rate that will be used
    rdel = 60;    
    f1 = 200;
    t60dc = 3;
    t60m = 2;
    f2 = 6000;
    out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q);
    pareq_stereo(eqf,eql,Q) = fi.peak_eq_rm(eql,eqf,tpbt), fi.peak_eq_rm(eql,eqf,tpbt)
    with {
        tpbt = wcT/sqrt(max(0,g)); // tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4)
        wcT = 2*ma.PI*eqf/ma.SR;  // peak frequency in rad/sample
        g = ba.db2linear(eql); // peak gain
    };
    eq1f = 315;
    eq1l = 0;
    eq1q = 3;
    eq2f = 1500;
    eq2l = 0;
    eq2q = 3;
    dry_wet(x,y) = *(wet) + dry*x, *(wet) + dry*y 
    with {
        wet = 0.5*(drywet+1.0);
        dry = 1.0-wet;
    };
    drywet = vslider("[1] Wet/Dry Mix [style:knob] [tooltip: Ratio of dry and wet signal. -1 = fully wet, +1 = fully dry]",
        0,-1.0,1.0,0.01) : si.smoo;
    gain = vslider("[2] Level [unit:dB] [style:knob] [tooltip: Output scale
        factor]", -6, -70, 40, 0.1) : ba.db2linear : si.smoo;
    out_level = *(gain),*(gain);
};

//----------------------------------`(dm.)zita_rev1`------------------------------
// Example GUI for `zita_rev1_stereo` (mostly following the Linux `zita-rev1` GUI).
//
// Only the dry/wet and output level parameters are "dezippered" here. If
// parameters are to be varied in real time, use `smooth(0.999)` or the like
// in the same way.
//
// #### Usage
//
// ```
// _,_ : zita_rev1 : _,_
// ```
//
// #### Reference
//
// <http://www.kokkinizita.net/linuxaudio/zita-rev1-doc/quickguide.html>
//------------------------------------------------------------
declare zita_rev1 author "Julius O. Smith III";
declare zita_rev1 licence "MIT";

zita_rev1 = _,_ <: re.zita_rev1_stereo(rdel,f1,f2,t60dc,t60m,fsmax),_,_ : out_eq,_,_ :
    dry_wet : out_level
with{
    fsmax = 48000.0;  // highest sampling rate that will be used

    fdn_group(x) = hgroup(
    "[0] Zita_Rev1 [tooltip: ~ ZITA REV1 FEEDBACK DELAY NETWORK (FDN) & SCHROEDER
    ALLPASS-COMB REVERBERATOR (8x8). See Faust's reverbs.lib for documentation and
    references]", x);

    in_group(x) = fdn_group(hgroup("[1] Input", x));

    rdel = in_group(vslider("[1] In Delay [unit:ms] [style:knob] [tooltip: Delay in ms
        before reverberation begins]",60,20,100,1));

    freq_group(x) = fdn_group(hgroup("[2] Decay Times in Bands (see tooltips)", x));

    f1 = freq_group(vslider("[1] LF X [unit:Hz] [style:knob] [scale:log] [tooltip:
        Crossover frequency (Hz) separating low and middle frequencies]", 200, 50, 1000, 1));

    t60dc = freq_group(vslider("[2] Low RT60 [unit:s] [style:knob] [scale:log]
    [style:knob] [tooltip: T60 = time (in seconds) to decay 60dB in low-frequency band]",
    3, 1, 8, 0.1));

    t60m = freq_group(vslider("[3] Mid RT60 [unit:s] [style:knob] [scale:log] [tooltip:
        T60 = time (in seconds) to decay 60dB in middle band]",2, 1, 8, 0.1));

    f2 = freq_group(vslider("[4] HF Damping [unit:Hz] [style:knob] [scale:log]
    [tooltip: Frequency (Hz) at which the high-frequency T60 is half the middle-band's T60]",
    6000, 1500, 0.49*fsmax, 1));

    out_eq = pareq_stereo(eq1f,eq1l,eq1q) : pareq_stereo(eq2f,eq2l,eq2q);
    // Zolzer style peaking eq (not used in zita-rev1) (filters.lib):
    // pareq_stereo(eqf,eql,Q) = peak_eq(eql,eqf,eqf/Q), peak_eq(eql,eqf,eqf/Q);
    // Regalia-Mitra peaking eq with "Q" hard-wired near sqrt(g)/2 (filters.lib):
    pareq_stereo(eqf,eql,Q) = fi.peak_eq_rm(eql,eqf,tpbt), fi.peak_eq_rm(eql,eqf,tpbt)
    with {
        tpbt = wcT/sqrt(max(0,g)); // tan(PI*B/SR), B bw in Hz (Q^2 ~ g/4)
        wcT = 2*ma.PI*eqf/ma.SR;  // peak frequency in rad/sample
        g = ba.db2linear(eql); // peak gain
    };

    eq1_group(x) = fdn_group(hgroup("[3] RM Peaking Equalizer 1", x));

    eq1f = eq1_group(vslider("[1] Eq1 Freq [unit:Hz] [style:knob] [scale:log] [tooltip:
        Center-frequency of second-order Regalia-Mitra peaking equalizer section 1]",
    315, 40, 2500, 1));

    eq1l = eq1_group(vslider("[2] Eq1 Level [unit:dB] [style:knob] [tooltip: Peak level
        in dB of second-order Regalia-Mitra peaking equalizer section 1]", 0, -15, 15, 0.1));

    eq1q = eq1_group(vslider("[3] Eq1 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth
        of second-order peaking equalizer section 1]", 3, 0.1, 10, 0.1));

    eq2_group(x) = fdn_group(hgroup("[4] RM Peaking Equalizer 2", x));

    eq2f = eq2_group(vslider("[1] Eq2 Freq [unit:Hz] [style:knob] [scale:log] [tooltip:
        Center-frequency of second-order Regalia-Mitra peaking equalizer section 2]",
    1500, 160, 10000, 1));

    eq2l = eq2_group(vslider("[2] Eq2 Level [unit:dB] [style:knob] [tooltip: Peak level
        in dB of second-order Regalia-Mitra peaking equalizer section 2]", 0, -15, 15, 0.1));

    eq2q = eq2_group(vslider("[3] Eq2 Q [style:knob] [tooltip: Q = centerFrequency/bandwidth
        of second-order peaking equalizer section 2]", 3, 0.1, 10, 0.1));

    out_group(x) = fdn_group(hgroup("[5] Output", x));

    dry_wet(x,y) = *(wet) + dry*x, *(wet) + dry*y with {
        wet = 0.5*(drywet+1.0);
        dry = 1.0-wet;
    };

    drywet = out_group(vslider("[1] Wet/Dry Mix [style:knob] [tooltip: Ratio of dry and wet signal. -1 = fully wet, +1 = fully dry]",
    0, -1.0, 1.0, 0.01)) : si.smoo;

    out_level = *(gain),*(gain);

    gain = out_group(vslider("[2] Level [unit:dB] [style:knob] [tooltip: Output scale
        factor]", -20, -70, 40, 0.1)) : ba.db2linear : si.smoo;
};


//----------------------------------`(dm.)vital_rev_demo`------------------------------
// Example GUI for `vital_rev` with all parameters exposed.
//
// #### Usage
//
// ```
// _,_ : vital_rev_demo : _,_
// ```
//
//------------------------------------------------------------
vital_rev_demo = hgroup("Reverb", re.vital_rev(prelow, prehigh, lowcutoff, highcutoff, lowgain, highgain, chorus_amt, chorus_freq, predelay, time, size, mix))
with {
    // SMOO = _; 
    SMOO = si.smoo; // optionally turn on smoo of hsliders

    Prefilter(x) = hgroup("[0] Pre-filter", x:SMOO);
    Filter(x) = hgroup("[1] Filter", x:SMOO);
    Chorus(x) = hgroup("[2] Chorus", x:SMOO);
    Space(x) = hgroup("[3] Space", x:SMOO);

    prelow = Prefilter(hslider("[0] Low Cutoff [style:knob]", it.remap(16,135,0,1,16), 0, 1, .01));
    prehigh = Prefilter(hslider("[1] High Cutoff [style:knob]", it.remap(16,135,0,1,110), 0, 1, .01));

    lowcutoff = Filter(hslider("[0] Low Shelf [style:knob]", it.remap(16,135,0,1,16), 0, 1, .01));
    highcutoff = Filter(hslider("[2] High Shelf [style:knob]", it.remap(16,135,0,1,90), 0, 1, .01));

    lowgain = Filter(hslider("[1] Low Gain [style:knob]", it.remap(-6,0,0,1,0), 0, 1, .01));
    highgain = Filter(hslider("[3] High Gain [style:knob]", it.remap(-6,0,0,1,-1), 0, 1, .01));

    chorus_amt = Chorus(hslider("[0] Amount [style:knob]", .01, 0, 1, .01));
    chorus_freq = Chorus(hslider("[1] Rate [style:knob]", 0.1, 0, 1, .01));

    predelay = Space(hslider("[0] Pre-Delay [style:knob]", 0, 0, 1, .01));
    time = Space(hslider("[1] Decay Time [style:knob]", 0.5, 0, 1, .01));
    size = Space(hslider("[2] Size [style:knob]", .5, 0, 1, .01)) : aa.clip(0, 1);

    mix = hslider("[4] Mix [style:knob]",  1, 0, 1, .01) : SMOO : aa.clip(0, 1);
};
declare vital_rev_demo author "David Braun";
declare vital_rev_demo license "GPL-3.0";


//--------------------------`(dm.)reverbTank_demo`---------------------------
//
// This is a stereo reverb following the "ReverbTank" example in [1],
// although some parameter ranges and scaling have been adjusted.
// It is an unofficial version of the Spin Semiconductor® Reverb.
// Other relevant instructional material can be found in [2-4].
//
// #### Usage
// ```
// _,_ : reverbTank_demo : _,_
// ```
//
// #### References
// * [1] Pirkle, W. C. (2019). Designing audio effect plugins in C++ (2nd ed.). Chapter 17.14.
//
// * [2] Spin Semiconductor. (n.d.). Reverberation. Retrieved 2024-04-16, from <http://www.spinsemi.com/knowledge_base/effects.html#Reverberation>
//
// * [3] Zölzer, U. (2022). Digital audio signal processing (3rd ed.). Chapter 7, Figure 7.39.
//
// * [4] Valhalla DSP. (2010, August 25). RIP Keith Barr. Retrieved 2024-04-16, from <https://valhalladsp.com/2010/08/25/rip-keith-barr/>
//-----------------------------------------------------------------------
reverbTank_demo = hgroup("Reverb", ef.dryWetMixer(wet, 
    (preDelay : preFilter : avg : ((si.bus(2) :> branches) ~ selectLastBranchDelay) : selectLR :> shelves)
))
with {
    /*
    All-capitalized signals are compile-time constant.
    All other signals can be modulated in real-time, although you may not necessarily want to modulate them.
    */

    // SMOO = _; // If you don't want to smooth parameters.
    SMOO = si.smoo;

    PRE_DELAY_MAX_MSEC = 100;
    OUTER_DELAY_MAX_MSEC = 100;
    INNER_DELAY_MAX_MSEC = 100;
    FIXED_DELAY_MAX_MSEC = 100;

    OUTER_DELAY_MAX_SAMPS = OUTER_DELAY_MAX_MSEC : msec2samp;
    INNER_DELAY_MAX_SAMPS = INNER_DELAY_MAX_MSEC : msec2samp;
    FIXED_DELAY_MAX_SAMPS = FIXED_DELAY_MAX_MSEC : msec2samp;

    enableLFO = 1; // set to zero if you don't want LFO, which is used for the chorus
    LFO_MAX_MODULATION_MS = 0.3;

    outerG = 0.5;
    innerG = -outerG;
    lfoRates = 0.15, 0.33, 0.57, 0.73; // [NUM_BRANCHES]. Measured in Hz

    // Note that fixedDelayWeights and apfDelayWeights are not volume weights.
    // They get multiplied by globalFixedMaxDelay and globalAPFMaxDelay respectively
    // to current tap lengths (for the fixed delays) and current delays (for APF delays).

    // Note that if you turn `fixedDelayWeights` into something changing in real-time,
    // then you need to remove an optimization related to `DELAY_MAX_SAMPS` in `multiTapDelay`
    fixedDelayWeights = 1.0, 0.873, 0.707, 0.667;  // [NUM_BRANCHES]

    // Thick mode:
    TAPS_PER_BRANCH = 2;
    tapPctsLeft = 23, 31, 41, 47, 59, 67, 73, 83;  // [NUM_TAPS]
    tapPctsRght = 29, 37, 43, 53, 61, 71, 79, 89;  // [NUM_TAPS]
    apfDelayWeights = 0.317, 0.873, 0.477, 0.291, 0.993, 0.757, 0.179, 0.575;  // [NUM_TAPS]

    // Sparse mode:
    // TAPS_PER_BRANCH = 1;
    // tapPctsLeft = (23, 41, 59, 73);  // [NUM_TAPS]
    // tapPctsRght = (29, 43, 61, 79);  // [NUM_TAPS]
    // apfDelayWeights = 0.317, 0.873, 0.477, 0.291;  // [NUM_TAPS]

    NUM_BRANCHES = 4;
    NUM_TAPS = NUM_BRANCHES * TAPS_PER_BRANCH;

    PreUI(x) = hgroup("[0] Pre", x:SMOO);
    DelayUI(x) = hgroup("[1] Delay", x:SMOO);
    Filter(x) = hgroup("[2] Post-Filter", x:SMOO);
    wet = hslider("[3] Wet [style:knob]", 1, 0, 1, .01) : SMOO;

    preDelayTime = PreUI(hslider("[0] Delay [style:knob][unit:ms]", 0, 0, PRE_DELAY_MAX_MSEC, 1)) : msec2samp;
    preFilterCutoff = PreUI(hslider("[1] LPF Cutoff [style:knob][unit:KHz]", 16, 1, 20, .1))*1000;

    globalAPFMaxDelay = DelayUI(hslider("[0] APF Delay [style:knob][unit:ms]", 33*.85, 0, INNER_DELAY_MAX_MSEC, .01)) : msec2samp;
    globalFixedMaxDelay = DelayUI(hslider("[1] Fixed Delay [style:knob][unit:ms]", 81.0, 0, OUTER_DELAY_MAX_MSEC, .01)) : msec2samp;
    kRT = DelayUI(hslider("[2] Reverb Time [style:knob]", .5, 0, 1, .01)) : it.remap(0, 1, -72, -6) : ba.db2linear;
    lfoDepth = DelayUI(hslider("[3] LFO Depth [style:knob][unit:ms]", LFO_MAX_MODULATION_MS*.1, 0, LFO_MAX_MODULATION_MS, .01)) : msec2samp;
    lpfCutoff = DelayUI(hslider("[4] LPF Cutoff [style:knob][unit:KHz]", 15, 1, 20, .1))*1000;

    lowCutoffFrequency = Filter(hslider("[0] Low Shelf [style:knob][unit:midi]", 16, 16, 135, .1)) : aa.clip(16, 135) : ba.midikey2hz;
    highCutoffFrequency = Filter(hslider("[2] High Shelf [style:knob][unit:midi]", 90, 16, 135, .1)) : aa.clip(16, 135) : ba.midikey2hz;
    lowGain = Filter(hslider("[1] Low Gain [style:knob][unit:dB]", -20, -20, 20, .1)) : aa.clip(-20, 20);
    highGain = Filter(hslider("[3] High Gain [style:knob][unit:dB]", -6, -20, 20, .1)) : aa.clip(-20, 20);

    msec2samp(ms) = ms*ma.SR/1000; 

    // -------------`nestedDelayAPF`-----------------
    // Nested Allpass Filter, as described in [1].
    // The user can pass an `outerDelay` function whose delay length
    // is modulated by an LFO. The user can also put an LTI filter such
    // as a low-pass filter on the outerDelay function.
    //
    // #### Usage
    // ```
    // _ : nestedDelayAPF(outerDelay, MAXLEN, curDel, outerG, innerG) : _
    // ```
    // Where:
    // * `outerDelay`: a delay function with one input and one output
    // * `MAXLEN`: constant maximum delay in samples of the inner allpass filter
    // * `curDel`: current delay in samples of the inner allpass filter
    // * `outerG`: allpass minus-gain coefficient [-1..1]
    // * `innerG`: allpass minus-gain coefficient [-1..1]
    //
    // #### References
    // [1] Pirkle, W. C. (2019). Designing audio effect plugins in C++ (2nd ed.). Chapter 17.13.17.
    //------------------------------------------------------------
    nestedDelayAPF(outerDelay, MAXLEN, curDel, outerG, innerG) =
    (+ <: (innerAPF:outerDelay),*(outerG)) ~ *(-outerG) : mem,_ : +
    with {
        innerAPF = fi.allpass_fcomb(MAXLEN, curDel, innerG);
    };

    // inputs:
    // * `i`: the branch index
    // * `x`: input signal (sum of pre-delay and output of previous branch)
    //
    // outputs:
    // * `i`: previous branch index plus 1
    // * `preBranchSig`: passthrough preBranchSig
    // * Delayed value to be used for next branch
    // * Sum of left channel tap(s)
    // * Sum of right channel tap(s)
    branch(i, x) = x : nestedAllpass : lpf : multiTapDelay
    with {
        nestedAllpass = nestedDelayAPF(outerDelay, INNER_DELAY_MAX_SAMPS, innerDelaySamps, outerG, innerG)
        with {
            outerDelay = lpf : de.fdelayltv(DELAY_ORDER, OUTER_DELAY_MAX_SAMPS, safeDelaySamps) // todo: is fdelayltv worth it?
            with {
                DELAY_ORDER = 2;
                minDelaySamps = (DELAY_ORDER-1)/2;
                delaySampsWithLFO = os.osc(lfoRate) : it.remap(-1, 1, outerDelaySamps, max(minDelaySamps, outerDelaySamps-lfoDepth));
                safeDelaySamps = ba.if(enableLFO, delaySampsWithLFO, outerDelaySamps) : max(minDelaySamps);
            };
            outerDelaySamps = globalAPFMaxDelay*(ba.selectn(NUM_TAPS, i*2  , apfDelayWeights));
            innerDelaySamps = globalAPFMaxDelay*(ba.selectn(NUM_TAPS, i*2+1, apfDelayWeights));
            lfoRate = ba.selectn(NUM_BRANCHES, i, lfoRates);
        };
        // note that the same LPF is used in two places (inside the nested APF and outside it but in the branch)
        lpf = fi.lowpass(1, lpfCutoff);

        // Here we rely on Faust's compiler to only use one delay line!
        multiTapDelay = _ <: delayLine(fixedDelaySamps)*kRT, getChannel(0), getChannel(1)
        with {
            // Note that we use fdelaylti instead of fdelayltv because we assume the delay lengths
            // aren't being changed rapidly
            delayLine(delaySamps) = de.fdelaylti(DELAY_ORDER, DELAY_MAX_SAMPS, safeDelaySamps)
            with {
                // If `fixedDelayWeights` is constant then we can use this memory optimization:
                DELAY_MAX_SAMPS = OUTER_DELAY_MAX_SAMPS*fixedDelayWeight;
                // Otherwise, we'd have to use this:
                // DELAY_MAX_SAMPS = FIXED_DELAY_MAX_SAMPS;

                DELAY_ORDER = 2;
                safeDelaySamps = max(delaySamps, (DELAY_ORDER-1)/2);
            };

            fixedDelayWeight = ba.selectn(NUM_BRANCHES, i, fixedDelayWeights);
            fixedDelaySamps = globalFixedMaxDelay*fixedDelayWeight;

            getChannel(c) = sum(k, TAPS_PER_BRANCH, getTap(c, k));
            // Note that the tap positions scale with fixedDelaySamps rather than globalFixedMaxDelay or OUTER_DELAY_MAX_SAMPS
            getTap(c, k) = delayLine(fixedDelaySamps*delayPct) * ((-1)^(i+c))
            with {
                delayPct = tap_left, tap_rght : select2(c) : _/100
                with {
                    tap_left = ba.selectn(NUM_TAPS, i*TAPS_PER_BRANCH+k, tapPctsLeft);
                    tap_rght = ba.selectn(NUM_TAPS, i*TAPS_PER_BRANCH+k, tapPctsRght);
                };
            };
        };
    };

    repeatpar(1, FX) = FX;
    repeatpar(n, FX) = FX <: (si.bus(iC), si.block(oC-iC):repeatpar(n-1, FX)), si.bus(oC)
    with {
        iC = inputs(FX);
        oC = outputs(FX);
    };

    branches = (0, _, 0 : repeatpar(NUM_BRANCHES, fx)) : keepBranchChannels
    with {
        // inputs:
        // * `i`: branch index, starting at 0
        // * `x`: the signal before all of the branches
        // * `y`: the delayed signal from the previous branch, if any
        //
        // outputs:
        // * increment `i` so that the next fx has i+1 in the same arg slot
        // * passthrough `x` so it stays as the signal before all of the branches
        // * the output(s) of the next branch, by passing `x+y` as input
        fx(i, x, y) = i+1, x, branch(i, x+y);

        // For each branch, cut the integer `i` and `x` channels, but keep the remaining channels:
        // * the local branch's "delayed" output
        // * the left tap(s)
        // * the right tap(s)
        keepBranchChannels = par(b, NUM_BRANCHES, (!, !, si.bus(outputs(fx)-2)));
    };

    // use fdelaylti instead of fdelayltv because the user probably isn't changing the predelay quickly
    preDelay = sp.stereoize(de.fdelaylti(DELAY_ORDER, preDelayMaxSamp, safeDelaySamps))
    with {
        DELAY_ORDER = 1;
        safeDelaySamps = max(preDelayTime, (DELAY_ORDER-1)/2);
        preDelayMaxSamp = PRE_DELAY_MAX_MSEC : msec2samp;
    };
    preFilter = sp.stereoize(fi.lowpass(1, preFilterCutoff));
    avg = _,_:> _*.5;
    selectLastBranchDelay = ba.selector(0, 3*NUM_BRANCHES);
    selectLR = par(i, NUM_BRANCHES, (!, _, _)); // for each branch, cut the "delayed" output and keep the left-right outputs
    shelves = sp.stereoize(_/NUM_TAPS:(fi.lowshelf(1, lowGain, lowCutoffFrequency) : fi.highshelf(1, highGain, highCutoffFrequency)));
};

declare reverbTank_demo author "David Braun";
declare reverbTank_demo copyright "Copyright (C) 2024 by David Braun <braun@ccrma.stanford.edu>";
declare reverbTank_demo license "MIT-style STK-4.3 license";


//----------------------------------`(dm.)dattorro_rev_demo`------------------------------
// Example GUI for `dattorro_rev` with all parameters exposed and additional
// dry/wet and output gain control.
//
// #### Usage
//
// ```
// _,_ : dattorro_rev_demo : _,_
// ```
//
//------------------------------------------------------------
declare dattorro_rev_demo author "Jakob Zerbian";
declare dattorro_rev_demo license "MIT-style STK-4.3 license";

dattorro_rev_demo = _,_ <: re.dattorro_rev(pre_delay, bw, i_diff1, i_diff2, decay, d_diff1, d_diff2, damping),_,_:
    dry_wet : out_level
with {
    rev_group(x) = hgroup("[0] Dattorro Reverb",x);

    in_group(x) = rev_group(hgroup("[0] Input",x));
    pre_delay = 0;
    bw = in_group(vslider("[1] Prefilter [style:knob] [tooltip: lowpass-like filter, 0 = no signal, 1 = no filtering]",0.7,0.0,1.0,0.001) : si.smoo);
    i_diff1 = in_group(vslider("[2] Diffusion 1 [style:knob] [tooltip: diffusion factor, influences reverb color and density]",0.625,0.0,1.0,0.001) : si.smoo);
    i_diff2 = in_group(vslider("[3] Diffusion 2 [style:knob] [tooltip: diffusion factor, influences reverb color and density]",0.625,0.0,1.0,0.001) : si.smoo);

    fdb_group(x) = rev_group(hgroup("[1] Feedback",x));
    d_diff1 = fdb_group(vslider("[1] Diffusion 1 [style:knob] [tooltip: diffusion factor, influences reverb color and density]",0.625,0.0,1.0,0.001) : si.smoo);
    d_diff2 = fdb_group(vslider("[2] Diffusion 2 [style:knob] [tooltip: diffusion factor, influences reverb color and density]",0.625,0.0,1.0,0.001) : si.smoo);
    decay = fdb_group(vslider("[3] Decay Rate [style:knob] [tooltip: decay length, 1 = infinite]",0.7,0.0,1.0,0.001) : si.smoo);
    damping = fdb_group(vslider("[4] Damping [style:knob] [tooltip: dampening in feedback network]",0.625,0.0,1.0,0.001) : si.smoo);

    out_group(x) = rev_group(hgroup("[2] Output",x));
    dry_wet(x,y) = *(dry) + wet*x, *(dry) + wet*y 
    with {
        wet = 0.5*(drywet+1.0);
        dry = 1.0-wet;
    };
    drywet = out_group(vslider("[1] Dry/Wet Mix [style:knob] [tooltip: -1 = dry, 1 = wet]",0,-1.0,1.0,0.01) : si.smoo);
    gain = out_group(vslider("[2] Level [unit:dB] [style:knob] [tooltip: Output Gain]", -6, -70, 40, 0.1) : ba.db2linear : si.smoo);
    out_level = *(gain),*(gain);
};

//----------------------------------`(dm.)jprev_demo`------------------------------
// Example GUI for `jprev` with all parameters exposed. 
//
// #### Usage
//
// ```
// _,_ : jprev_demo : _,_
// ```
//
//------------------------------------------------------------
declare jprev_demo author "Till Bovermann";
declare jprev_demo license "GPL2+";

jprev_demo = re.jpverb(t60, damp, size, early_diff, mod_depth, mod_freq, low, mid, high, low_cutoff, high_cutoff)
with {
    rev_group(x) = vgroup("[0] JPrev",x);
    invSqrt2 = 1/sqrt(2);
    mix_group(x) = rev_group(hgroup("[0] Mix",x));
    early_diff = mix_group(hslider("[1]earlyDiff [style:knob]", invSqrt2, 0, 0.990, 0.001));
    size = mix_group(hslider("[2]size [style:knob]", 1, 0.5, 3, 0.01));
    t60 = mix_group(hslider("[3]t60 [style:knob]", 1, 0.1, 60, 0.1));
    damp = mix_group(hslider("[4]damp [style:knob]", 0, 0, 0.999, 0.0001));
    
    eq_group(x) = rev_group(hgroup("[1] EQ",x));
    low = eq_group(hslider("[07]lowX [style:knob]", 1, 0, 1, 0.01));
    mid = eq_group(hslider("[08]midX [style:knob]", 1, 0, 1, 0.01));
    high = eq_group(hslider("[09]highX [style:knob]", 1, 0, 1, 0.01));
    low_cutoff = eq_group(hslider("[10]lowBand [style:knob]", 500, 100, 6000, 0.1));
    high_cutoff = eq_group(hslider("[11]highBand [style:knob]", 2000, 1000, 10000, 0.1));
    
    mod_group(x) = rev_group(hgroup("[2] Mod",x));
    mod_depth = mod_group(hslider("[1]mDepth [style:knob]", 0.1, 0, 1, 0.001));
    mod_freq = mod_group(hslider("[2]mFreq [style:knob]", 2, 0, 10, 0.010));  
};


//----------------------------------`(dm.)greyhole_demo`------------------------------
// Example GUI for `greyhole` with all parameters exposed. 
//
// #### Usage
//
// ```
// _,_ : greyhole_demo : _,_
// ```
//
//------------------------------------------------------------
declare greyhole_demo author "Till Bovermann";
declare greyhole_demo license "GPL2+";

greyhole_demo = re.greyhole(dt, damp, size, early_diff, feedback, mod_depth, mod_freq)
with {

    rev_group(x) = vgroup("[0] Greyhole",x);
    
    mix_group(x) = rev_group(hgroup("[0] Mix",x));
    dt = mix_group(hslider("[01]delayTime [style:knob]", 0.2, 0.001, 1.45, 0.0001));
    damp = mix_group(hslider("[02]damping [style:knob]", 0, 0, 0.99, 0.001));
    size = mix_group(hslider("[03]size [style:knob]", 1, 0.5, 3, 0.0001));
    early_diff = mix_group(hslider("[04]diffusion [style:knob]", 0.5, 0, 0.99, 0.0001));
    feedback = mix_group(hslider("[05]feedback [style:knob]", 0.9, 0, 1, 0.01));
    
    mod_group(x) = rev_group(hgroup("[1] Mod",x));
    mod_depth = mod_group(hslider("[06]modDepth [style:knob]", 0.1, 0, 1, 0.001));
    mod_freq = mod_group(hslider("[07]modFreq [style:knob]", 2, 0, 10, 0.01));
};

//====================================Generators==========================================
//========================================================================================

//--------------------------`(dm.)sawtooth_demo`---------------------------
// An application demonstrating the different sawtooth oscillators of Faust.
//
// #### Usage
//
// ```
// sawtooth_demo : _
// ```
//------------------------------------------------------------
declare sawtooth_demo author "Julius O. Smith III";
declare sawtooth_demo licence "MIT";

sawtooth_demo = signal
with{
    osc_group(x) = vgroup("[0] SAWTOOTH OSCILLATOR [tooltip: See Faust's oscillators.lib
        for documentation and references]",x);
    knob_group(x)  = osc_group(hgroup("[1]", x));
    ampdb  = knob_group(vslider("[1] Amplitude [unit:dB] [style:knob] [tooltip: Sawtooth
        waveform amplitude]",-20,-120,10,0.1));
    amp = ampdb : ba.db2linear : si.smoo;
    freq = knob_group(vslider("[2] Frequency [unit:PK] [style:knob] [tooltip: Sawtooth
        frequency as a Piano Key (PK) number (A440 = key 49)]",49,1,88,0.01) : ba.pianokey2hz);
    detune1 = 1 + 0.01 * knob_group(
    vslider("[3] Detuning 1 [unit:%%] [style:knob] [tooltip: Percentage frequency-shift
    up or down for second oscillator]",-0.1,-10,10,0.01));
    detune2 = 1 + 0.01 * knob_group(vslider("[4] Detuning 2 [unit:%%] [style:knob] [tooltip:
        Percentage frequency-shift up or down for third detuned oscillator]",+0.1,-10,10,0.01));
    portamento = knob_group(vslider("[5] Portamento [unit:sec] [style:knob] [scale:log]
    [tooltip: Portamento (frequency-glide) time-constant in seconds]",0.1,0.001,10,0.001));
    sfreq = freq : si.smooth(ba.tau2pole(portamento));
    saworder = knob_group(nentry("[6] Saw Order [tooltip: Order of sawtootn aliasing
        suppression]",2,1,os.MAX_SAW_ORDER,1));
    sawchoice = _ <: par(i,os.MAX_SAW_ORDER,os.sawN(i+1)) :
        ba.selectn(int(os.MAX_SAW_ORDER), int(saworder-1)); // when max is pwr of 2
    tone = (amp/3) * (sawchoice(sfreq) + sawchoice(sfreq*detune1) + sawchoice(sfreq*detune2));
    signal = amp * select2(ei, select2(ss, tone, white_or_pink_noise), _);
    white_or_pink_noise = select2(wp,no.noise,no.pink_noise);
    checkbox_group(x) = knob_group(vgroup("[7] Alternate Signals",x));
    ss = checkbox_group(checkbox("[0] Noise (White or Pink - uses only Amplitude control on
        the left)"));
    wp = checkbox_group(checkbox("[1] Pink instead of White Noise (also called 1/f Noise)
        [tooltip: Pink Noise (or 1/f noise) is Constant-Q Noise, meaning that it has the
        same total power in every octave]"));
    ei = checkbox_group(checkbox("[2] External Signal Input (overrides Sawtooth/Noise
        selection above)"));
};


//----------------------`(dm.)virtual_analog_oscillator_demo`----------------------
// Virtual analog oscillator demo application.
//
// #### Usage
//
// ```
// virtual_analog_oscillator_demo : _
// ```
//------------------------------------------------------------
declare virtual_analog_oscillator_demo author "Julius O. Smith III";
declare virtual_analog_oscillator_demo licence "MIT";

virtual_analog_oscillator_demo = signal
with{
    osc_group(x) = vgroup("[0] VIRTUAL ANALOG OSCILLATORS
        [tooltip: See Faust's oscillators.lib for documentation and references]",x);

    // Signals
    sawchoice = _ <:
    // When MAX_SAW_ORDER is a power of 2:
    par(i,os.MAX_SAW_ORDER,os.sawN(i+1)) : ba.selectn(int(os.MAX_SAW_ORDER), int(saworder-1));
    // When MAX_SAW_ORDER is NOT a power of 2:
    // (par(i,MAX_SAW_ORDER,sawN(i+1)), par(j,MAX_SAW_ORDER_NEXTPOW2-MAX_SAW_ORDER,_))
    //   : selectn(MAX_SAW_ORDER_NEXTPOW2, saworder-1);
    saw = (amp/3) *
        (sawchoice(sfreq) + sawchoice(sfreq*detune1) + sawchoice(sfreq*detune2));
    sq = (amp/3) *
    (os.square(sfreq) + os.square(sfreq*detune1) + os.square(sfreq*detune2));
    tri = (amp/3) *
    (os.triangle(sfreq) + os.triangle(sfreq*detune1) + os.triangle(sfreq*detune2));
    pt = (amp/3) * (os.pulsetrain(sfreq,ptd)
            + os.pulsetrain(sfreq*detune1,ptd)
            + os.pulsetrain(sfreq*detune2,ptd));
    ptN = (amp/3) * (os.pulsetrainN(N,sfreq,ptd)
            + os.pulsetrainN(N,sfreq*detune1,ptd)
            + os.pulsetrainN(N,sfreq*detune2,ptd)) with { N=3; };
    pn = amp * no.pink_noise;

    signal = ssaw*saw + ssq*sq + stri*tri
           + spt*((ssptN*ptN)+(1-ssptN)*pt)
           + spn*pn + sei*_;

    // Signal controls:
    signal_group(x) = osc_group(hgroup("[0] Signal Levels",x));
    ssaw = signal_group(vslider("[0] Sawtooth [style:vslider]",1,0,1,0.01));

    pt_group(x) = signal_group(vgroup("[1] Pulse Train",x));
    ssptN = pt_group(checkbox("[0] Order 3
        [tooltip: When checked, use 3rd-order aliasing suppression (up from 2)
    See if you can hear a difference with the freq high and swept]"));
    spt = pt_group(vslider("[1] [style:vslider]",0,0,1,0.01));
    ptd = pt_group(vslider("[2] Duty Cycle [style:knob]",0.5,0,1,0.01))
    : si.smooth(0.99);

    ssq = signal_group(vslider("[2] Square [style:vslider]",0,0,1,0.01));
    stri = signal_group(vslider("[3] Triangle [style:vslider]",0,0,1,0.01));
    spn = signal_group(vslider(
        "[4] Pink Noise [style:vslider][tooltip: Pink Noise (or 1/f noise) is
        Constant-Q Noise, meaning that it has the same total power in every octave
        (uses only amplitude controls)]",0,0,1,0.01));
    sei = signal_group(vslider("[5] Ext Input [style:vslider]",0,0,1,0.01));

    // Signal Parameters
    knob_group(x) = osc_group(hgroup("[1] Signal Parameters", x));
    af_group(x) = knob_group(vgroup("[0]", x));
    ampdb = af_group(hslider("[1] Mix Amplitude [unit:dB] [style:hslider]
        [tooltip: Sawtooth waveform amplitude]",-20,-120,10,0.1));
    amp = ampdb : ba.db2linear : si.smoo;
    freq = af_group(hslider("[2] Frequency [unit:PK] [style:hslider] [tooltip: Sawtooth
        frequency as a Piano Key (PK) number (A440 = key 49)]",49,1,88,0.01) : ba.pianokey2hz);

    detune1 = 1 - 0.01 * knob_group(
        vslider("[3] Detuning 1 [unit:%%] [style:knob]
    [tooltip: Percentage frequency-shift up or down for second oscillator]",
    -0.1,-10,10,0.01));
    detune2 = 1 + 0.01 * knob_group(
    vslider("[4] Detuning 2 [unit:%%] [style:knob]
    [tooltip: Percentage frequency-shift up or down for third detuned oscillator]",
    +0.1,-10,10,0.01));
    portamento = knob_group(
    vslider("[5] Portamento [unit:sec] [style:knob] [scale:log]
    [tooltip: Portamento (frequency-glide) time-constant in seconds]",
    0.1,0.001,10,0.001));
    saworder = knob_group(nentry("[6] Saw Order [tooltip: Order of sawtooth aliasing
    suppression]",2,1,os.MAX_SAW_ORDER,1));
    sfreq = freq : si.smooth(ba.tau2pole(portamento));
};


//--------------------------`(dm.)oscrs_demo` ---------------------------
// Simple application demoing filter based oscillators.
//
// #### Usage
//
// ```
// oscrs_demo : _
// ```
//-------------------------------------------------------------------
declare oscrs_demo author "Julius O. Smith III";
declare oscrs_demo licence "MIT";

oscrs_demo = signal
with{
    osc_group(x) = vgroup("[0] SINE WAVE OSCILLATOR oscrs [tooltip: Sine oscillator based
        on 2D vector rotation]",x);
    ampdb  = osc_group(hslider("[1] Amplitude [unit:dB] [tooltip: Sawtooth waveform
        amplitude]",-20,-120,10,0.1));
    amp = ampdb : ba.db2linear : si.smoo;
    freq = osc_group(
        hslider("[2] Frequency [unit:PK]
    [tooltip: Sine wave frequency as a Piano Key (PK) number (A440 = 49 PK)]",
    49,1,88,0.01) : ba.pianokey2hz);
    portamento = osc_group(
    hslider("[3] Portamento [unit:sec] [scale:log]
    [tooltip: Portamento (frequency-glide) time-constant in seconds]",
    0.1,0.001,10,0.001));
    sfreq = freq : si.smooth(ba.tau2pole(portamento));
    signal = amp * os.oscrs(sfreq);
};

oscr_demo = oscrs_demo; // synonym


//--------------------------`(dm.)velvet_noise_demo`---------------------------
// Listen to velvet_noise!
//
// #### Usage
//
// ```
// velvet_noise_demo : _
// ```
//-------------------------------------------------------------------
declare velvet_noise_demo author "Julius O. Smith III";
declare velvet_noise_demo licence "MIT";

velvet_noise_demo = vn
with{
    amp = hslider("Amp [unit:dB]",-10,-70,10,0.1) : ba.db2linear;
    f0 = 10.0, hslider("Freq [unit:log10(Hz)]",3,0,4,0.001) : pow;
    vn = no.velvet_noise(amp,f0);
};


//--------------------------`(dm.)latch_demo`---------------------------
// Illustrate latch operation.
//
// #### Usage
//
// ```
// echo 'import("stdfaust.lib");' > latch_demo.dsp
// echo 'process = dm.latch_demo;' >> latch_demo.dsp
// faust2octave latch_demo.dsp
// Octave:1> plot(faustout);
// ```
//-------------------------------------------------------------------
declare latch_demo author "Julius O. Smith III";
declare latch_demo licence "MIT";

latch_demo = x, c, ba.latch(c,x) // plot(faustout) after faust2octave
with{
    f = float(ma.SR)/1000.0;
    x = os.oscr(f);
    c = 0.5 * os.oscrs(5*f); // sample 5 times per period
};


//--------------------------`(dm.)envelopes_demo`---------------------------
// Illustrate various envelopes overlaid, including their gate * 1.1.
//
// #### Usage
//
// ```
// echo 'import("stdfaust.lib");' > envelopes_demo.dsp
// echo 'process = dm.envelopes_demo;' >> envelopes_demo.dsp
// faust2octave envelopes_demo.dsp
// Octave:1> plot(faustout);
// ```
//-------------------------------------------------------------------
declare envelopes_demo author "Julius O. Smith III";
declare envelopes_demo licence "MIT";

envelopes_demo = gate <: _*1.1,envSE,envAR,envARFE,envARE,envASR,envADSR,envADSRE
with{
    gate = (1-(1@500)) + 0.5*(1@750-(1@1700)); // retrigger at 1/2 amp
    envSE    = en.smoothEnvelope(attSec/6.91); // uses time-constant not t60
    envAR    = en.ar(attSec,relT60);
    envARFE  = en.arfe(attSec,relT60,0.25);
    envARE   = en.are(attSec,relT60);
    envASR   = en.asr(attSec,susLvl,relT60);
    envADSR  = en.adsr(attSec,decT60,susLvl,relT60);
    envADSRE = en.adsre(attSec,decT60,susLvl,relT60);
    attSec=0.002; //  2 ms attack time
    decT60=0.010; // 10 ms decay-to-sustain time
    susLvl=0.80;  // Sustain level = 0.8
    relT60=0.010; // 10 ms release (decay-to-zero) time
};

//-------------------`(dm.)fft_spectral_level_demo`------------------
// Make a real-time spectrum analyzer using FFT from analyzers.lib.
//
// #### Usage
//
// ```
// echo 'import("stdfaust.lib");' > fft_spectral_level_demo.dsp
// echo 'process = dm.fft_spectral_level_demo;' >> fft_spectral_level_demo.dsp
// Mac:
//   faust2caqt fft_spectral_level_demo.dsp
//   open fft_spectral_level_demo.app
// Linux GTK:
//   faust2jack fft_spectral_level_demo.dsp
//   ./fft_spectral_level_demo
// Linux QT:
//   faust2jaqt fft_spectral_level_demo.dsp
//   ./fft_spectral_level_demo
// ```
//-------------------------------------------------------------------
declare fft_spectral_level_demo author "Julius O. Smith III";
declare fft_spectral_level_demo licence "MIT";

fft_spectral_level_demo(N) =  an.rfft_spectral_level(N,tau,dB_offset)
with{
    ctl_group(x)  = hgroup("[1] FFT SPECTRUM ANALYZER CONTROLS", x);
    tau = ctl_group(hslider("[0] Level Averaging Time [unit:ms] [scale:log]
        [tooltip: band-level averaging time in milliseconds]",
        100,1,10000,1)) * 0.001;
    dB_offset = ctl_group(hslider("[1] Level dB Offset [unit:dB]
        [tooltip: Level offset in decibels]",
        50,-50,100,1));
};

//-----------------`(dm.)reverse_echo_demo(nChans)`----------------
// Multichannel echo effect with reverse delays.
//
// #### Usage
//
// ```
// echo 'import("stdfaust.lib");' > reverse_echo_demo.dsp
// echo 'nChans = 3; // Any integer > 1 should work here' >> reverse_echo_demo.dsp
// echo 'process = dm.reverse_echo_demo(nChans);' >> reverse_echo_demo.dsp
// Mac:
//   faust2caqt reverse_echo_demo.dsp
//   open reverse_echo_demo.app
// Linux GTK:
//   faust2jack reverse_echo_demo.dsp
//   ./reverse_echo_demo
// Linux QT:
//   faust2jaqt reverse_echo_demo.dsp
//   ./reverse_echo_demo
// Etc.
// ```
//-------------------------------------------------------------------
declare reverse_echo_demo author "Julius O. Smith III";
declare reverse_echo_demo licence "MIT";

reverse_echo_demo(nChans) =  ef.reverseEchoN(nChans,delMax) : ef.uniformPanToStereo(nChans) 
with {
    delMax = 2^int(nentry("Log2(Delay)",15,5,16,1)); // delay line length
};

//------------------------`(dm.)pospass_demo`------------------------
// Use Positive-Pass Filter pospass() to frequency-shift a sine tone.
// First, a real sinusoid is converted to its analytic-signal form
// using pospass() to filter out its negative frequency component.
// Next, it is multiplied by a modulating complex sinusoid at the
// shifting frequency to create the frequency-shifted result.
// The real and imaginary parts are output to channels 1 & 2.
// For a more interesting frequency-shifting example, check the
// "Use Mic" checkbox to replace the input sinusoid by mic input.
// Note that frequency shifting is not the same as frequency scaling.
// A frequency-shifted harmonic signal is usually not harmonic.
// Very small frequency shifts give interesting chirp effects when
// there is feedback around the frequency shifter.
//
// #### Usage
//
// ```
// echo 'import("stdfaust.lib");' > pospass_demo.dsp
// echo 'process = dm.pospass_demo;' >> pospass_demo.dsp
// Mac:
//   faust2caqt pospass_demo.dsp
//   open pospass_demo.app
// Linux GTK:
//   faust2jack pospass_demo.dsp
//   ./pospass_demo
// Linux QT:
//   faust2jaqt pospass_demo.dsp
//   ./pospass_demo
// Etc.
// ```
//-------------------------------------------------------------------
declare pospass_demo author "Julius O. Smith III";
declare pospass_demo licence "MIT";

pospass_demo(x) = analytic_signal, modulator : si.cmul with {
  N = 6; // pospass filter order
  fc = ma.SR/(2*N); // guard-band for filter roll-off
  octavesShift = hslider("Frequency Shift in octaves away from SR/16",
         -2,-7,3,0.001) : si.smooth(0.999);
  in_select = checkbox("Use Mic");
  sine_tone = os.oscrs(f0);
  f0 = ma.SR/16.0;   // original frequency to be shifted
  fn = f0 * 2.0^octavesShift; // modulated frequency
  df = fn - f0; // frequency-shift as a difference
  input = select2(in_select, sine_tone, x);
  analytic_signal = input : fi.pospass6e(fc); // filter out neg freqs
  //analytic_signal = os.oscrs(f0) : fi.pospass(N,fc); // Butterworth case
  modulator = os.oscrq(df) : si.cconj; // complex modulation sinusoid
  // modulator(n) = exp(sqrt(-1) * 2 * ma.PI * df * n / ma.SR) // if complex ok
};

// end jos section
/************************************************************************
************************************************************************
FAUST library file, GRAME section

Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
GNU Lesser General Public License for more details.

You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.

EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/

// TODO: Add GRAME functions here

//########################################################################################
/************************************************************************
FAUST library file, further contributions section

All contributions below should indicate both the contributor and terms
of license.  If no such indication is found, "git blame" will say who
last edited each line, and that person can be emailed to inquire about
license disposition, if their license choice is not already indicated
elsewhere among the libraries.    It is expected that all software will be
released under LGPL, STK-4.3, MIT, BSD, or a similar FOSS license.
************************************************************************/

//-------------------------------`(dm.)exciter`-------------------------------
// Psychoacoustic harmonic exciter, with GUI.
//
// #### Usage
//
// ```
// _ : exciter : _
// ```
//
// #### References
//
// * <https://secure.aes.org/forum/pubs/ebriefs/?elib=16939>
// * <https://www.researchgate.net/publication/258333577_Modeling_the_Harmonic_Exciter>
//-------------------------------------------------------------------------------------
declare exciter author "PPriyanka Shekar and Julius O. Smith III";
declare exciter licence "STK-4.3";

//-------------------------------------------------------------------------------------
exciter = _ <: (fi.highpass(2, fc) : compressor : pregain : harmonicCreator :
    postgain), _ : balance
with{
    // TODO: rewrite to use the standard compressor from compressors.lib
    compressor = ba.bypass1(cbp,compressorMono)
    with{
        comp_group(x) = vgroup("COMPRESSOR  [tooltip: Reference:
            http://en.wikipedia.org/wiki/Dynamic_range_compression]", x);

    meter_group(x) = comp_group(hgroup("[0]", x));
    knob_group(x) = comp_group(hgroup("[1]", x));

    cbp = meter_group(checkbox("[0] Bypass  [tooltip: When this is checked,
        the compressor has no effect]"));

    gainview = co.compression_gain_mono(ratio,threshold,attack,release) : ba.linear2db
        : meter_group(hbargraph("[1] Compressor Gain [unit:dB] [tooltip: Current gain
        of the compressor in dB]",-50,+10));

    displaygain = _ <: _,abs : _,gainview : attach;

    compressorMono = displaygain(co.compressor_mono(ratio,threshold,attack,release));

    ctl_group(x) = knob_group(hgroup("[3] Compression Control", x));

    ratio = ctl_group(hslider("[0] Ratio [style:knob]  [tooltip: A compression Ratio
    of N means that for each N dB increase in input signal level above Threshold, the
    output level goes up 1 dB]", 5, 1, 20, 0.1));

    threshold = ctl_group(hslider("[1] Threshold [unit:dB] [style:knob] [tooltip:
    When the signal level exceeds the Threshold (in dB), its level is compressed
    according to the Ratio]", -30, -100, 10, 0.1));

    env_group(x) = knob_group(hgroup("[4] Compression Response", x));

    attack = env_group(hslider("[1] Attack [unit:ms] [style:knob]  [tooltip:
    Time constant in ms (1/e smoothing time) for the compression gain to approach
    (exponentially) a new lower target level (the compression `kicking in')]",
    50, 0, 500, 0.1)) : *(0.001) : max(1/ma.SR);

    release = env_group(hslider("[2] Release [unit:ms] [style: knob]  [tooltip:
    Time constant in ms (1/e smoothing time) for the compression gain to approach
    (exponentially) a new higher target level (the compression 'releasing')]",
    500, 0, 1000, 0.1)) : *(0.001) : max(1/ma.SR);
    };

    //Exciter GUI controls
    ex_group(x) = hgroup("EXCITER  [tooltip: Reference: Patent US4150253 A]", x);

    //Highpass - selectable cutoff frequency
    fc = ex_group(hslider("[0] Cutoff Frequency [unit:Hz] [style:knob] [scale:log]
        [tooltip: Cutoff frequency for highpassed components to be excited]",
    5000, 1000, 10000, 100));

    //Pre-distortion gain - selectable percentage of harmonics
    ph = ex_group(hslider("[1] Harmonics [unit:percent] [style:knob] [tooltip:
        Percentage of harmonics generated]", 20, ma.EPSILON, 200, 1)) / 100;
    pregain = * (ph);

    // TODO: same thing: why doesn't this use cubicnl?
    //Asymmetric cubic soft clipper
    harmonicCreator(x) = x <: cubDist1, cubDist2, cubDist3 :> _;
    cubDist1(x) = (x < 0) * x;
    cubDist2(x) = (x >= 0) * (x <= 1) * (x - x ^ 3 / 3);
    cubDist3(x) = (x > 1) * 2/3;

    //Post-distortion gain - undoes effect of pre-gain
    postgain = * (1/ph);

    //Balance - selectable dry/wet mix
    ml = ex_group(hslider("[2] Mix [style:knob] [tooltip: Dry/Wet mix of original signal
        to excited signal]", 0.5, 0, 1, 0.01));
    balance = (_ * ml), (_ * (1.0 - ml)) :> _;
};


//----------------------------`(dm.)vocoder_demo`-------------------------
// Use example of the vocoder function where an impulse train is used
// as excitation.
//
// #### Usage
//
// ```
// _ : vocoder_demo : _
// ```
//------------------------------------------------------------
declare vocoder_demo author "Romain Michon";
declare vocoder_demo licence "LGPL";

vocoder_demo = hgroup("My Vocoder",_,os.lf_imptrain(freq)*gain :
    ve.vocoder(bands,att,rel,BWRatio) <: _,_)
with{
    bands = 32;
    vocoderGroup(x) = vgroup("Vocoder",x);
    att = vocoderGroup(hslider("[0] Attack [style:knob] [tooltip: Attack time in seconds]",
        5,0.1,100,0.1)*0.001);
    rel = vocoderGroup(hslider("[1] Release [style:knob] [tooltip: Release time in seconds]",
        5,0.1,100,0.1)*0.001);
    BWRatio = vocoderGroup(hslider("[2] BW [style:knob] [tooltip: Coefficient to adjust the
        bandwidth of each band]",0.5,0.1,2,0.001));
    excitGroup(x) = vgroup("Excitation",x);
    freq = excitGroup(hslider("[0] Freq [style:knob]",330,50,2000,0.1));
    gain = excitGroup(vslider("[1] Gain",0.5,0,1,0.01) : si.smoo);
};

//-----------------`(dm.)colored_noise_demo`--------------------
// A coloured noise signal generator.
//
// #### Usage
//
// ```
// colored_noise_demo : _
// ```
//
//-------------------------------------------------
declare colored_noise author "Constantinos Odysseas Economou";
declare colored_noise license "MIT";

colored_noise_demo = no.colored_noise(N,alpha) : *(ampdb) : *(gate)
with {
    N = 12;

    alpha = hslider("[0] Alpha [style:knob] [tooltip: Spectral roll-off factor]", 0.0, -1.0, 1.0, 0.001) : si.smoo;
    ampdb = hslider("[1] Amplitude [unit:dB] [style:knob] [tooltip: Noise amplitude]", -20, -120, 10, 0.1) : ba.db2linear : si.smoo;
    gate = checkbox("[2] Gate");
};

// end further contributions section