1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081
|
//################################### hoa.lib ############################################
// Faust library for high order ambisonic. Its official prefix is `ho`.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/hoa.lib>
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2012 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("maths.lib");
si = library("signals.lib");
ba = library("basics.lib");
os = library("oscillators.lib");
ho = library("hoa.lib");
ro = library("routes.lib");
de = library("delays.lib");
declare name "High Order Ambisonics library";
declare version "1.4.0";
declare author "Pierre Guillot";
declare author "Eliott Paris";
declare author "Julien Colafrancesco";
declare author "Wargreen";
declare author "Alain Bonardi";
declare author "Paul Goutmann";
declare copyright "2012-2013 Guillot, Paris, Colafrancesco, CICM labex art H2H, U. Paris 8, 2019 Wargreen, 2022 Bonardi, Goutmann";
//============================Encoding/decoding Functions=================================
//========================================================================================
//----------------------`(ho.)encoder`---------------------------------
// Ambisonic encoder. Encodes a signal in the circular harmonics domain
// depending on an order of decomposition and an angle.
//
// #### Usage
//
// ```
// encoder(N, x, a) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `x`: the signal
// * `a`: the angle
//----------------------------------------------------------------
encoder(0, x, a) = x;
encoder(N, x, a) = encoder(N-1, x, a), x*sin(N*a), x*cos(N*a);
//-------`(ho.)rEncoder`----------
// Ambisonic encoder in 2D including source rotation. A mono signal is encoded at a certain ambisonic order
// with two possible modes: either rotation with an angular speed, or static with a fixed angle (when speed is zero).
//
// #### Usage
//
// ```
// _ : rEncoder(N, sp, a, it) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `sp`: the azimuth speed expressed as angular speed (2PI/sec), positive or negative
// * `a`: the fixed azimuth when the rotation stops (sp = 0) in radians
// * `it` : interpolation time (in milliseconds) between the rotation and the fixed modes
//-----------------------------
rEncoder(N, sp, a, it) = thisEncoder
with {
basicEncoder(sig, angle) = ho.encoder(N, sig, angle);
thisEncoder = (_, rotationOrStaticAngle) : basicEncoder
with {
//converting the static angle from radians to [0; 1]
an = (a / (2 * ma.PI), 1) : fmod;
rotationOrStaticAngle = ((1-vn) * x + vn * an) * 2 * ma.PI;
//to manage the case where frequency is zero, smoothly switches from one mode to another//
vn = (sp == 0) : si.smooth(ba.tau2pole(it));
x = (os.phasor(1, sp), an, 1) : (+, _) : fmod;
};
};
//-------`(ho.)stereoEncoder`----------
// Encoding of a stereo pair of channels with symetric angles (a/2, -a/2).
//
// #### Usage
//
// ```
// _,_ : stereoEncoder(N, a) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `a` : opening angle in radians, left channel at a/2 angle, right channel at -a/2 angle
//-----------------------------
stereoEncoder(N, a) = (leftEncoder, rightEncoder) :> si.bus(2*N+1)
with {
basicEncoder(sig, angle) = ho.encoder(N, sig, angle);
leftEncoder = (_, a / 2) : basicEncoder;
rightEncoder = (_, -a /2) : basicEncoder;
};
//-------`(ho.)multiEncoder`----------
// Encoding of a set of P signals distributed on the unit circle according to a list of P speeds and P angles.
//
// #### Usage
//
// ```
// _,_, ... : multiEncoder(N, lspeed, langle, it) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `lspeed` : a list of P speeds in turns by second (one speed per input signal, positive or negative)
// * `langle` : a list of P angles in radians on the unit circle to localize the sources (one angle per input signal)
// * `it` : interpolation time (in milliseconds) between the rotation and the fixed modes.
//-----------------------------
multiEncoder(N, lspeed, langle, it) = par(i, P, thisEncoder(ba.take(i+1, lspeed), ba.take(i+1, langle), it)) :> si.bus(2*N+1)
with {
P = outputs(langle); //supposed to be the same as outputs(lspeed)
basicEncoder(sig, angle) = ho.encoder(N, sig, angle);
thisEncoder(sp, a, it) = (_, rotationOrStaticAngle) : basicEncoder
with {
//converting the static angle from radians to [0; 1]
an = (a / (2 * ma.PI), 1) : fmod;
rotationOrStaticAngle = ((1-vn) * x + vn * an) * 2 * ma.PI;
//to manage the case where frequency is zero, smoothly switches from one mode to another//
vn = (sp == 0) : si.smooth(ba.tau2pole(it));
x = (os.phasor(1, sp), an, 1) : (+, _) : fmod;
};
};
//--------------------------`(ho.)decoder`--------------------------------
// Decodes an ambisonics sound field for a circular array of loudspeakers.
//
// #### Usage
//
// ```
// _ : decoder(N, P) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `P`: the number of speakers (constant numerical expression)
//
// #### Note
//
// The number of loudspeakers must be greater or equal to 2n+1.
// It's preferable to use 2n+2 loudspeakers.
//-------------------------------------------------------------------
decoder(N, P) = par(i, 2*N+1, _) <: par(i, P, speaker(N, 2 * ma.PI*i/P))
with {
speaker(N,a) = /(2), par(i, 2*N, _), encoder(N, 2/P, a) : si.dot(2*N+1);
};
//-----------------------`(ho.)decoderStereo`------------------------
// Decodes an ambisonic sound field for stereophonic configuration.
// An "home made" ambisonic decoder for stereophonic restitution
// (30° - 330°): Sound field lose energy around 180°. You should
// use `inPhase` optimization with ponctual sources.
// #### Usage
//
// ```
// _ : decoderStereo(N) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
//--------------------------------------------------------------
decoderStereo(N) = decoder(N, P) <: (par(i, 2*N+2, gainLeft(360 * i / P)) :> _),
(par(i, 2*N+2, gainRight(360 * i / P)) :> _)
with {
P = 2*N+2;
gainLeft(a) = _ * sin(ratio_minus + ratio_cortex)
with {
ratio_minus = ma.PI*.5 * abs((30 + a) / 60 * ((a <= 30)) + (a - 330) / 60 * (a >= 330));
ratio_cortex= ma.PI*.5 * abs((120 + a) / 150 * (a > 30) * (a <= 180));
};
gainRight(a) = _ * sin(ratio_minus + ratio_cortex)
with {
ratio_minus = ma.PI*.5 * abs((390 - a) / 60 * (a >= 330) + (30 - a) / 60 * (a <= 30));
ratio_cortex= ma.PI*.5 * abs((180 - a) / 150 * (a < 330) * (a >= 180));
};
};
//-------`(ho.)iBasicDecoder`----------
// The irregular basic decoder is a simple decoder that projects the incoming ambisonic situation
// to the loudspeaker situation (P loudspeakers) whatever it is, without compensation.
// When there is a strong irregularity, there can be some discontinuity in the sound field.
//
// #### Usage
//
// ```
// _,_, ... : iBasicDecoder(N,la, direct, shift) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (there are 2*N+1 inputs to this function)
// * `la` : the list of P angles in degrees, for instance (0, 85, 182, 263) for four loudspeakers
// * `direct`: 1 for direct mode, -1 for the indirect mode (changes the rotation direction)
// * `shift` : angular shift in degrees to easily adjust angles
//-----------------------------
iBasicDecoder(N, la, direct, shift) = (par(i, 2*N+1, _) <: par(i, P, speaker(N, ang(i))))
with {
P = outputs(la);
ang(i) = (ba.take(i+1, la) - direct * shift) * direct * ma.PI / 180.;
speaker(N,alpha) = /(2), par(i, 2*N, _), ho.encoder(N,2/P,alpha) : si.dot(2*N+1);
};
//-------`(ho.)circularScaledVBAP`----------
// The function provides a circular scaled VBAP with all loudspeakers and the virtual source on the unit-circle.
//
// #### Usage
//
// ```
// _ : circularScaledVBAP(l, t) : _,_, ...
// ```
//
// Where:
//
// * `l` : the list of angles of the loudspeakers in degrees, for instance (0, 85, 182, 263) for four loudspeakers
// * `t` : the current angle of the virtual source in degrees
//-----------------------------
circularScaledVBAP(l, t) = thisCircularVbap
with {
//modulo indexes between 1 and the number of elements of the list
modIndex(i, l) = ma.modulo(i, outputs(l)) + 1;
//
//pick up the ith angle with a 360 degree modulo
getElt(i, l) = ma.modulo(ba.take(modIndex(i, l), l), 360);
//
//function to compute the sinus of the difference between angles expressed in degrees
diffSin(u, v) = sin((v - u) * ma.PI / 180.);
//
//permutations to be used to compute scaledVBAPGain
p1(a, b, c, d) = (b, c, d, a);
p2(a, b, c, d) = (a, c, b, d);
//
//computation of the scaled VBAP gain of a pair
scaledVBAPGain(t1, t2, t) = ((diffSin(t2, t) <:(_, _, _)), (ma.signum(diffSin(t2, t1)) <: (_, _)), (diffSin(t, t1) <:(_, _, _))) : (*, *, *, *) : p1 : (_, _, (+ : sqrt <: (_, _))) : p2 : (/, /);
sVBAPGain(i, l, t) = scaledVBAPGain(getElt(i, l), getElt(i+1, l), t);
//
//computes the left and the right gains using the matrix inversion (VBAP)
leftGain(i, l, t) = sVBAPGain(i, l, t) : (_, !);
rightGain(i, l, t) = sVBAPGain(i, l, t) : (!, _);
//computation of boolean activePair that determines whether the pair of LS is active or not
//we have to distinguish leftGain >0 and rightGain >= 0
//if we put >=0 for both, two pairs will be simultaneously active when theta is one of the loudspeaker angles in the list
//if we put > 0 for both, all the pairs will be inactive when theta is one of the loudspeaker angles in the list
activePair(i, l, t) = (leftGain(i, l, t) > 0) * (rightGain(i, l, t) >= 0);
//
//computes the total gain for each loudspeaker
cumulatedGain(i, l, t) = rightGain(outputs(l)+i-1, l, t) * activePair(outputs(l)+i-1, l, t) + leftGain(i, l, t) * activePair(i, l, t);
//
thisCircularVbap = _ <: par(i, outputs(l), *(cumulatedGain(i, l, t)));
};
//-------`(ho.)imlsDecoder`----------
// Irregular decoder in 2D for an irregular configuration of P loudspeakers
// using 2D VBAP for compensation.
//
// #### Usage
//
// ```
// _,_, ... : imlsDecoder(N,la, direct, shift) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `la` : the list of P angles in degrees, for instance (0, 85, 182, 263) for four loudspeakers
// * `direct`: 1 for direct mode, -1 for the indirect mode (changes the rotation direction)
// * `shift` : angular shift in degrees to easily adjust angles
//-----------------------------
imlsDecoder(N, la, direct, shift) = si.bus(2*N+1) : iVBAPDecoder
with {
P = outputs(la);
//The VBAP decoder uses VBAP compensation: it balances the regular decoder output enabling to use irregular angular setup.
Q = max(2*N+2, P);
iVBAPDecoder = ho.decoder(N, Q) : par(i, Q, circularScaledVBAP(la, (i * 360 / Q - direct * shift) * direct)) :> si.bus(P);
};
//-------`(ho.)iDecoder`----------
// General decoder in 2D enabling an irregular multi-loudspeaker configuration
// and to switch between multi-channel and stereo.
//
// #### Usage
//
// ```
// _,_, ... : iDecoder(N, la, direct, st, g) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `la`: the list of angles in degrees
// * `direct`: 1 for direct mode, -1 for the indirect mode (changes the rotation direction)
// * `shift` : angular shift in degrees to easily adjust angles
// * `st`: 1 for stereo, 0 for multi-loudspeaker configuration. When 1, stereo sounds goes through the first two channels
// * `g` : gain between 0 and 1
//-----------------------------
iDecoder(N, la, direct, shift, st, g) = thisDecoder
with {
//p is the number of outputs
P = outputs(la);
ambi = 1 - st;
//
//for stereo decoding
paddedStereoDecoder(N, P) = (gDecoderStereo, (0 <: si.bus(P-2)))
with {
leftDispatcher = _<:(*(1-direct), *(direct));
rightDispatcher = _<:(*(direct), *(1-direct));
gDecoderStereo = ho.decoderStereo(N) : (*(g), *(g)) : (leftDispatcher, rightDispatcher) :> (_,_);
};
//
thisDecoder = si.bus(2*N+1) <: (si.bus(2*N+1), si.bus(2*N+1)) : (imlsDecoder(N, la, direct, shift), paddedStereoDecoder(N, P)) : (par(i, P, *(ambi)), *(st), *(st), si.bus(P-2)) :> si.bus(P) : par(i, P, *(g));
};
//============================Optimization Functions======================================
// Functions to weight the circular harmonics signals depending to the
// ambisonics optimization.
// It can be `basic` for no optimization, `maxRe` or `inPhase`.
//========================================================================================
//----------------`(ho.)optimBasic`-------------------------
// The basic optimization has no effect and should be used for a perfect
// circle of loudspeakers with one listener at the perfect center loudspeakers
// array.
//
// #### Usage
//
// ```
// _ : optimBasic(N) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
//-----------------------------------------------------
optimBasic(N) = par(i, 2*N+1, _);
//----------------`(ho.)optimMaxRe`-------------------------
// The maxRe optimization optimizes energy vector. It should be used for an
// auditory confined in the center of the loudspeakers array.
//
// #### Usage
//
// ```
// _ : optimMaxRe(N) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
//-----------------------------------------------------
optimMaxRe(N) = par(i, 2*N+1, optim(i, N, _))
with {
optim(i, N, _)= _ * cos(indexabs / (2*N+1) * ma.PI)
with {
numberOfharmonics = 2 * N + 1;
indexabs = (int)((i - 1) / 2 + 1);
};
};
//----------------`(ho.)optimInPhase`-------------------------
// The inPhase optimization optimizes energy vector and put all loudspeakers signals
// in phase. It should be used for an auditory.
//
// #### Usage
//
// ```
// _ : optimInPhase(N) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
//-----------------------------------------------------
optimInPhase(N) = par(i, 2*N+1, optim(i, N, _))
with {
optim(i, N, _)= _ * (fact(N)^2.) / (fact(N+indexabs) * fact(N-indexabs))
with {
indexabs = (int)((i - 1) / 2 + 1);
fact(0) = 1;
fact(n) = n * fact(n-1);
};
};
//-------`(ho.)optim`----------
// Ambisonic optimizer including the three elementary optimizers:
// `(ho).optimBasic`, `(ho).optimMaxRe` and `(ho.)optimInPhase`.
//
// #### Usage
//
// ```
// _,_, ... : optim(N, ot) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `ot` : optimization type (0 for `optimBasic`, 1 for `optimMaxRe`, 2 for `optimInPhase`)
//-----------------------------
optim(N, ot) = thisOptimizer
with {
optb = (ot == 0) : si.smoo;
optm = (ot == 1) : si.smoo;
opti = (ot == 2) : si.smoo;
thisOptimizer = ((si.bus(2*N+1) <: ((si.bus(2*N+1):ho.optimBasic(N)), (si.bus(2*N+1):ho.optimMaxRe(N)), (si.bus(2*N+1):ho.optimInPhase(N)))), ((optb <: si.bus(2*N+1)), (optm <: si.bus(2*N+1)), (opti <: si.bus(2*N+1)))) : ro.interleave(6*N+3, 2) : par(i, 6*N+3, *) :> si.bus(2*N+1);
};
//----------------`(ho.)wider`-------------------------
// Can be used to wide the diffusion of a localized sound. The order
// depending signals are weighted and appear in a logarithmic way to
// have linear changes.
//
// #### Usage
//
// ```
// _ : wider(N,w) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `w`: the width value between 0 - 1
//-----------------------------------------------------
wider(N, w) = par(i, 2*N+1, perform(N, w, i, _))
with {
perform(N, w, i, _) = _ * (log(N+1) * (1 - w) + 1) * clipweight
with {
clipweight = weighter(N, w, i) * (weighter(N, w, i) > 0) * (weighter(N, w, i) <= 1) + (weighter(N, w, i) > 1)
with {
weighter(N, w, 0) = 1.;
weighter(N, w, i) = (((w * log(N+1)) - log(indexabs)) / (log(indexabs+1) - log(indexabs)))
with {
indexabs = (int)((i - 1) / 2 + 1);
};
};
};
};
//-------`(ho.)mirror`----------
// Mirroring effect on the sound field.
//
// #### Usage
//
// ```
// _,_, ... : mirror(N, fa) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `fa` : mirroring type (1 = original sound field, 0 = original+mirrored sound field, -1 = mirrored sound field)
//-----------------------------
mirror(N, fa) = (*(1), par(i, N, (*(fa), *(1))));
//----------------`(ho.)map`-------------------------
// It simulates the distance of the source by applying a gain
// on the signal and a wider processing on the soundfield.
//
// #### Usage
//
// ```
// map(N, x, r, a)
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `x`: the signal
// * `r`: the radius
// * `a`: the angle in radian
//-----------------------------------------------------
map(N, x, r, a) = encoder(N, x * volume(r), a) : wider(N, ouverture(r))
with {
volume(r) = 1. / (r * r * (r > 1) + (r <= 1));
ouverture(r) = r * (r < 1) + (r >= 1);
};
//----------------`(ho.)rotate`-------------------------
// Rotates the sound field.
//
// #### Usage
//
// ```
// _ : rotate(N, a) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `a`: the angle in radian
//-----------------------------------------------------
rotate(N, a) = par(i, 2*N+1, _) <: par(i, 2*N+1, rotation(i, a))
with {
rotation(i, a) = (par(j, 2*N+1, gain1(i, j, a)), par(j, 2*N+1, gain2(i, j, a)), par(j, 2*N+1, gain3(i, j, a)) :> _)
with {
indexabs = (int)((i - 1) / 2 + 1);
gain1(i, j, a) = _ * cos(a * indexabs) * (j == i);
gain2(i, j, a) = _ * sin(a * indexabs) * (j-1 == i) * (j != 0) * (i%2 == 1);
gain3(i, j, a) = (_ * sin(a * indexabs)) * (j+1 == i) * (j != 0) * (i%2 == 0) * (-1);
};
};
//-------`(ho.)scope`----------
// Produces an XY pair of signals representing the ambisonic sound field.
//
// #### Usage
//
// ```
// _,_, ... : scope(N, rt) : _,_
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `rt` : refreshment time in milliseconds
//-----------------------------
scope(N, rt) = thisScope
with {
//Angle sweeping at a speed corresponding to refresh period between 0 and 2*PI
theta = os.phasor(1, 1/rt) * 2 * ma.PI;
//we get the vector of harmonic functions thanks to the encoding function//
harmonicsVector = ho.encoder(N, 1, theta);
//
normalizedVector(N) = si.bus(N) <: (si.bus(N), norm) : ro.interleave(N, 2) : par(i, N, /)
with {
norm = par(i, N, _ <:(_,_) : *) :> _ : sqrt <: ((_ == 0), (_ > 0), _) : (_,*) : + <: si.bus(N);
};
//building (2N+1) normalized vectors
inputVector = (*(0.5), par(i, (2*N), _)) : normalizedVector(2*N+1);
normalizedHarmonics = harmonicsVector : normalizedVector(2*N+1);
//
rho = (inputVector, normalizedHarmonics) : si.dot(2*N+1) ;
thisScope = (rho <: (ma.fabs, (_ >= 0))) : ((_ <: (_,_)), _) : (*(sin(theta)), *(cos(theta)), _) : (*(-1), _,_);
};
//============================Spatial Sound Processes ====================================
// We propose implementations of processes intricated to the ambisonic model.
// The process is implemented using as many instances as the number of harmonics at at certain order.
// The key control parameters of these instances are computed thanks to distribution functions
// (th functions below) and to a global driving factor.
//========================================================================================
//-------`(ho.).fxDecorrelation`----------
// Spatial ambisonic decorrelation in fx mode.
//
// `fxDecorrelation` applies decorrelations to spatial components already created.
// The decorrelation is defined for each #i spatial component among P=2\*N+1 at the ambisonic order `N`
// as a delay of 0 if factor `fa` is under a certain value 1-(i+1)/P and d\*F((i+1)/p) in the contrary case,
// where `d` is the maximum delay applied (in samples) and F is a distribution function for durations.
// The user can choose this delay time distribution among 22 different ones.
// The delay increases according to the index of ambisonic components.
// But it increases at each step and it is modulated by a threshold.
// Therefore, delays are progressively revealed when the factor increases:
//
// * when the factor is close to 0, only upper components are delayed;
// * when the factor increases, more and more components are delayed.
//
//H THRESHOLD DELAY
//0 1-1/P 0 OR DELAY*F(1/P)
//-1 1-2/P 0 OR DELAY*F(2/P)
//1 1-3/P 0 OR DELAY*F(3/P)
//-2 1-4/P 0 OR DELAY*F(4/P)
//2 1-5/P 0 OR DELAY*F(5/P)
//...
//-(N-1) 1-(P-3)/P 0 OR DELAY*F((P-3)/P)
//(N-1) 1-(P-2)/P 0 OR DELAY*F((P-2)/P)
//-N 1-(P-1)/P 0 OR DELAY*F((P-1)/P)
//N 1-P/P 0 OR DELAY*F(P/P)
//
//
// #### Usage
//
// ```
// _,_, ... : fxDecorrelation(N, d, wf, fa, fd, tf) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `d`: the maximum delay applied (in samples)
// * `wf`: window frequency (in Hz) for the overlapped delay
// * `fa`: decorrelation factor (between 0 and 1)
// * `fd`: feedback / level of reinjection (between 0 and 1)
// * `tf`: type of function of delay distribution (integer, between 0 and 21)
//-----------------------------
fxDecorrelation(N, d, wf, fa, fd, tf) = par(i, 2*N+1, gate(d, i, 2*N+1, fa, tf, wf, fd))
with {
gate(d, i, N, fa, tf, wf, fd) = _ <: fdOverlappedDelay(dur(d, i, N, fa, tf), 262144, wf, fd) * env1(fa, i, N), _ * env1c(fa, i, N) : +;
//
fdOverlappedDelay(nsamp, nmax, freq, fdbk) = (+ : de.sdelay(nmax, int(ma.SR / freq), nsamp)) ~ (*(fdbk));
//
env1(fa, i, N) = (fa > ((N-i-1)/N)) : si.smooth(ba.tau2pole(0.005));
env1c(fa, i, N) = 1 - env1(fa, i, N);
//
//computes the ith duration of the ith delay in samples with twenty two possibilities of distribution
elemdur(d, i, p, fa, tf, ind) = (tf == ind) * (fa > (1 - x)) * d * x * fa
with {
x = th(ind, i, p);
};
//duration in samples computed as a sum of the 22 cases//
dur(d, i, p, fa, tf) = sum(ind, 22, elemdur(d, i, p, fa, tf, ind)) : int;
};
//-------`(ho.).synDecorrelation`----------
// Spatial ambisonic decorrelation in syn mode.
//
// `synDecorrelation` generates spatial decorrelated components in ambisonics from one mono signal.
// The decorrelation is defined for each #i spatial component among P=2\*N+1 at the ambisonic order `N`
// as a delay of 0 if factor `fa` is under a certain value 1-(i+1)/P and d\*F((i+1)/p) in the contrary case,
// where `d` is the maximum delay applied (in samples) and F is a distribution function for durations.
// The user can choose this delay time distribution among 22 different ones.
// The delay increases according to the index of ambisonic components.
// But it increases at each step and it is modulated by a threshold.
// Therefore, delays are progressively revealed when the factor increases:
//
// * when the factor is close to 0, only upper components are delayed;
// * when the factor increases, more and more components are delayed.
//
// When the factor is between [0; 1/P], upper harmonics are progressively faded and the level of the H0 component is compensated
// to avoid source localization and to produce a large mono.
//
//H THRESHOLD DELAY
//0 1-1/P 0 OR DELAY*F(1/P)
//-1 1-2/P 0 OR DELAY*F(2/P)
//1 1-3/P 0 OR DELAY*F(3/P)
//-2 1-4/P 0 OR DELAY*F(4/P)
//2 1-5/P 0 OR DELAY*F(5/P)
//...
//-(N-1) 1-(P-3)/P 0 OR DELAY*F((P-3)/P)
//(N-1) 1-(P-2)/P 0 OR DELAY*F((P-2)/P)
//-N 1-(P-1)/P 0 OR DELAY*F((P-1)/P)
//N 1-P/P 0 OR DELAY*F(P/P)
//
//
// #### Usage
//
// ```
// _,_, ... : synDecorrelation(N, d, wf, fa, fd, tf) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `d`: the maximum delay applied (in samples)
// * `wf`: window frequency (in Hz) for the overlapped delay
// * `fa`: decorrelation factor (between 0 and 1)
// * `fd`: feedback / level of reinjection (between 0 and 1)
// * `tf`: type of function of delay distribution (integer, between 0 and 21)
//-----------------------------
synDecorrelation(N, d, wf, fa, fd, tf) = _ <: par(i, 2*N+1, crossFade(d, i, 2*N+1, fa, tf, wf, fd))
with {
crossFade(d, i, N, fa, tf, wf, fd) = _ <: fdOverlappedDelay(dur(d, i, N, fa, tf), 262144, wf, fd) * env1(fa, i, N), _ * env1c(fa, i, N) :> _ * env2(fa, i, N);
//
fdOverlappedDelay(nsamp, nmax, freq, fdbk) = (+ : de.sdelay(nmax, int(ma.SR / freq), nsamp)) ~ (*(fdbk));
//
env1(fa, i, N) = (fa > ((N-i-1)/N)) : si.smooth(ba.tau2pole(0.005));
env1c(fa, i, N) = 1 - env1(fa, i, N) ;
env2(fa, i, N) = ((i > 0) * N * min(fa, 1/N)) + ((i == 0) * (sqrt(N) * (1 - (N - sqrt(N)) * min(fa, 1/N)))) : si.smooth(ba.tau2pole(0.005));
//
//computes the ith duration of the ith delay in samples with twenty two possibilities of distribution
elemdur(d, i, p, fa, tf, ind) = (tf == ind) * fa * d * x
with {
x = th(ind, i, p);
};
//duration in samples computed as a sum of the 22 cases//
dur(d, i, p, fa, tf) = sum(ind, 22, elemdur(d, i, p, fa, tf, ind)) : int;
};
//-------`(ho.).fxRingMod`----------
// Spatial ring modulation in syn mode.
//
// `fxRingMod` applies ring modulation to spatial components already created.
// The ring modulation is defined for each spatial component among P=2\*n+1 at the ambisonic order `N`.
// For each spatial component #i, the result is either the original signal or a ring modulated signal
// according to a threshold that is i/P.
//
// The general process is drive by a factor `fa` between 0 and 1 and a modulation frequency `f0`.
// If `fa` is greater than theshold (P-i-1)/P, the ith ring modulator is on with carrier frequency of f0\*(i+1)/P.
// On the contrary, it provides the original signal.
//
// Therefore ring modulators are progressively revealed when `fa` increases.
//
//H THRESHOLD OUTPUT
//0 (P-1)/P ORIGINAL OR RING MODULATION BY F0*1/P
//-1 (P-2)/P ORIGINAL OR RING MODULATION BY F0*2/P
//1 (P-3)/P ORIGINAL OR RING MODULATION BY F0*3/P
//-2 (P-4)/P ORIGINAL OR RING MODULATION BY F0*4/P
//2 (P-5)/P ORIGINAL OR RING MODULATION BY F0*5/P
//...
//-(N-1) 3/P ORIGINAL OR RING MODULATION BY F0*(P-3)/P
//(N-1) 2/P ORIGINAL OR RING MODULATION BY F0*(P-2)/P
//-N 1/P ORIGINAL OR RING MODULATION BY F0*(P-1)/P
//N 0 ORIGINAL OR RING MODULATION BY F0*P/P=F0
//
//
// #### Usage
//
// ```
// _,_, ... : fxRingMod(N, f0, fa, tf) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `f0`: the maximum delay applied (in samples)
// * `fa`: decorrelation factor (between 0 and 1)
// * `tf`: type of function of delay distribution (integer, between 0 and 21)
//-----------------------------
fxRingMod(N, f0, fa, tf) = par(i, 2*N+1, gate_ringmod(f0, i, 2*N+1, fa, tf))
with {
//
env1(fa, i, N) = (fa > ((N-i-1)/N)) : si.smooth(ba.tau2pole(0.005));
env1c(fa, i, N) = 1 - env1(fa, i, N);
//
gate_ringmod(f, i, N, fa, tf) = _ <: _ * os.osccos(freq(f, i, N, tf)) * env1(fa, i, N), _ * env1c(fa, i, N) : +;
//
ringmodfreq(f, i, N, tf, ind) = (tf == ind) * f * x * coef
with {
x = th(ind, i, N);
coef = min(1, max(N * (fa - (N - i - 1) / N), 0));
};
//
freq(f, i, N, tf) = sum(ind, 22, ringmodfreq(f, i, N, tf, ind)) : int;
};
//-------`(ho.).synRingMod`----------
// Spatial ring modulation in syn mode.
//
// `synRingMod` generates spatial components in ambisonics from one mono signal thanks to ring modulation.
// The ring modulation is defined for each spatial component among P=2\*n+1 at the ambisonic order `N`.
// For each spatial component #i, the result is either the original signal or a ring modulated signal
// according to a threshold that is i/P.
//
// The general process is drive by a factor `fa` between 0 and 1 and a modulation frequency `f0`.
// If `fa` is greater than theshold (P-i-1)/P, the ith ring modulator is on with carrier frequency of f0\*(i+1)/P.
// On the contrary, it provides the original signal.
//
// Therefore ring modulators are progressively revealed when `fa` increases.
// When the factor is between [0; 1/P], upper harmonics are progressively faded and the level of the H0 component is compensated
// to avoid source localization and to produce a large mono.
//
//H THRESHOLD OUTPUT
//0 (P-1)/P ORIGINAL OR RING MODULATION BY F0*1/P
//-1 (P-2)/P ORIGINAL OR RING MODULATION BY F0*2/P
//1 (P-3)/P ORIGINAL OR RING MODULATION BY F0*3/P
//-2 (P-4)/P ORIGINAL OR RING MODULATION BY F0*4/P
//2 (P-5)/P ORIGINAL OR RING MODULATION BY F0*5/P
//...
//-(N-1) 3/P ORIGINAL OR RING MODULATION BY F0*(P-3)/P
//(N-1) 2/P ORIGINAL OR RING MODULATION BY F0*(P-2)/P
//-N 1/P ORIGINAL OR RING MODULATION BY F0*(P-1)/P
//N 0 ORIGINAL OR RING MODULATION BY F0*P/P=F0
//
//
// #### Usage
//
// ```
// _,_, ... : synRingMod(N, f0, fa, tf) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `f0`: the maximum delay applied (in samples)
// * `fa`: decorrelation factor (between 0 and 1)
// * `tf`: type of function of delay distribution (integer, between 0 and 21)
//-----------------------------
synRingMod(N, f0, fa, tf) = _ <: par(i, 2*N+1, crossfade_ringmod(f0, i, 2*N+1, fa, tf))
with {
//
env1(fa, i, N) = (fa > ((N-i-1)/N)) : si.smooth(ba.tau2pole(0.005));
env1c(fa, i, N) = 1 - env1(fa, i, N);
env2(fa, i, N) = ((i > 0) * N * min(fa, 1/N)) + ((i == 0) * (sqrt(N) * (1 - (N - sqrt(N)) * min(fa, 1/N)))) : si.smooth(ba.tau2pole(0.005));
//
crossfade_ringmod(f, i, N, fa, tf) = _ <: _ * os.osccos(freq(f, i, N, tf)) * env1(fa, i, N), _ * env1c(fa, i, N) :> _ * env2(fa, i, N);
//
ringmodfreq(f, i, N, tf, ind) = (tf == ind) * f * x * coef
with {
x = th(ind, i, N);
coef = min(1, max(N * (fa - (N - i - 1) / N), 0));
};
//
freq(f, i, N, tf) = sum(ind, 22, ringmodfreq(f, i, N, tf, ind)) : int;
};
//TYPES OF DISTRIBUTIONS: 22 EASING FUNCTIONS FROM [0, 1] to [0,1]
//(i+1)/p belongs to [0, 1] and its image by any function in the list also belongs to the interval
th(0, i, p) = (i+1) / p;
th(1, i, p) = ((i+1) / p)^2;
th(2, i, p) = sin(ma.PI * 0.5 * (i+1) / p);
th(3, i, p) = log10(1 + (i+1) / p) / log10(2);
th(4, i, p) = sqrt((i+1) / p);
th(5, i, p) = 1 - cos(ma.PI * 0.5 * (i+1) / p);
th(6, i, p) = (1 - cos(ma.PI * (i+1) / p)) * 0.5;
th(7, i, p) = 1 - (1 - (i+1) / p )^2;
th(8, i, p) = ((i+1) / p < 0.5) * 2 * ((i+1) / p)^2 + ((i+1) / p >= 0.5) * (1 - (-2 * (i+1) / p + 2)^2 * 0.5);
th(9, i, p) = ((i+1) / p)^3;
th(10, i, p) = 1 - (1 - (i+1) / p)^3;
th(11, i, p) = ((i+1) / p < 0.5) * 4 * ((i+1) / p)^3 + ((i+1) / p >= 0.5) * (1 - (-2 * (i+1) / p + 2)^3 * 0.5);
th(12, i, p) = ((i+1) / p)^4;
th(13, i, p) = 1 - (1 - (i+1) / p)^4;
th(14, i, p) = ((i+1) / p < 0.5) * 8 * ((i+1) / p)^4 + ((i+1) / p >= 0.5) * (1 - (-2 * (i+1) / p + 2)^4 * 0.5);
th(15, i, p) = ((i+1) / p)^5;
th(16, i, p) = 1 - (1 - (i+1) / p)^5;
th(17, i, p) = ((i+1) / p < 0.5) * 16 * ((i+1) / p)^5 + ((i+1) / p >= 0.5) * (1 - (-2 * (i+1) / p + 2)^5 * 0.5);
th(18, i, p) = 2^(10 * (i+1) / p - 10);
th(19, i, p) = ((i+1) / p < 1) * (1 - 2^(-10 * (i+1) / p)) + ((i+1) / p == 1);
th(20, i, p) = 1 - sqrt(1 - ((i+1) / p)^2);
th(21, i, p) = sqrt(1 - ((i+1) / p - 1)^2);
//========================================================================================
//============================3D Functions================================================
//========================================================================================
//========================================================================================
//----------------------`(ho.)encoder3D`---------------------------------
// Ambisonic encoder. Encodes a signal in the circular harmonics domain
// depending on an order of decomposition, an angle and an elevation.
//
// #### Usage
//
// ```
// encoder3D(N, x, a, e) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `x`: the signal
// * `a`: the angle
// * `e`: the elevation
//----------------------------------------------------------------
encoder3D(N, x, theta, phi) = par(i, (N+1) * (N+1), x * y(degree(i), order(i), theta, phi))
with {
// The degree l of the harmonic[l, m]
degree(index) = int(sqrt(index));
// The order m of the harmonic[l, m]
order(index) = int(index - int(degree(index) * int(degree(index) + 1)));
// The spherical harmonics
y(l, m, theta, phi) = e(m, theta2) * k(l, m) * p(l, m, cos(phi + ma.PI * 0.5))
with {
//theta2 enables a continuous movement of elevation (when phi becomes greater than Pi/2)
theta2 = theta + (1 - int(fmod(fmod(phi / ma.PI - 0.5, 2) + 2, 2))) * ma.PI;
//
// The associated Legendre polynomial
// If l = 0 => p = 1
// If l = m => p = -1 * (2 * (l-1) + 1) * sqrt(1 - cphi*cphi) * p(l-1, l-1, cphi)
// If l = m+1 => p = phi * (2 * (l-1) + 1) * p(l-1, l-1, cphi)
// Else => p = (cphi * (2 * (l-1) + 1) * p(l-1, abs(m), cphi) - ((l-1) + abs(m)) * p(l-2, abs(m), cphi)) / ((l-1) - abs(m) + 1)
p(l, m, cphi) = pcalcul(((l != 0) & (l == abs(m))) + ((l != 0) & (l == abs(m)+1)) * 2 + ((l != 0) & (l != abs(m)) & (l != abs(m)+1)) * 3, l, m, cphi)
with {
pcalcul(0, l, m, cphi) = 1;
pcalcul(1, l, m, cphi) = -1 * (2 * (l-1) + 1) * sqrt(1 - cphi*cphi) * p(l-1, l-1, cphi);
pcalcul(2, l, m, cphi) = cphi * (2 * (l-1) + 1) * p(l-1, l-1, cphi);
pcalcul(s, l, m, cphi) = (cphi * (2 * (l-1) + 1) * p(l-1, abs(m), cphi) - ((l-1) + abs(m)) * p(l-2, abs(m), cphi)) / ((l-1) - abs(m) + 1);
};
// The exponential imaginary
// If m > 0 => e^i*m*theta = cos(m * theta)
// If m < 0 => e^i*m*theta = sin(-m * theta)
// If m = 0 => e^i*m*theta = 1
e(m, theta) = ecalcul((m > 0) * 2 + (m < 0), m, theta)
with {
ecalcul(2, m, theta) = cos(m * theta);
ecalcul(1, m, theta) = sin(abs(m) * theta);
ecalcul(s, m, theta) = 1;
};
// The normalization
// If m = 0 => k(l, m) = 1
// If m != 0 => k(l, m) = sqrt((l - abs(m))! / l + abs(m))!) * sqrt(2)
k(l, m) = kcalcul((m != 0), l, m)
with {
kcalcul(0, l, m) = 1;
kcalcul(1, l, m) = sqrt(2) / sqrtFactQuotient(l+abs(m), l-abs(m))
with {
//factorial quotient fq(n, p)=n! / p! = n(n-1)...(p+1) when n > p
//enables factor simplification
//and considering the square root of a product as a product of square roots
sqrtFactQuotient(n, p) = sqrtProd(n-p, p)
with {
//sqrtProd(n, p) computes the product sqrt(p+1) x sqrt(p+2) x ... x sqrt(n)
//to enable factorial quotient simplification
sqrtProd(1, p) = sqrt(p+1);
sqrtProd(n, p) = sqrt(p+n) * sqrtProd(n-1, p);
};
};
};
};
};
//-------`(ho.)rEncoder3D`----------
// Ambisonic encoder in 3D including source rotation. A mono signal is encoded at at certain ambisonic order
// with two possible modes: either rotation with 2 angular speeds (azimuth and elevation), or static with a fixed pair of angles.
//
// `rEncoder3D` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : rEncoder3D(N, azsp, elsp, az, el, it) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `azsp`: the azimuth speed expressed as angular speed (2PI/sec), positive or negative
// * `elsp`: the elevation speed expressed as angular speed (2PI/sec), positive or negative
// * `az`: the fixed azimuth when the azimuth rotation stops (azsp = 0) in radians
// * `el`: the fixed elevation when the elevation rotation stops (elsp = 0) in radians
// * `it` : interpolation time (in milliseconds) between the rotation and the fixed modes
//-----------------------------
rEncoder3D(N, azsp, elsp, az, el, it) = this3DEncoder
with {
basic3DEncoder(sig, ang1, ang2) = encoder3D(N, sig, ang1, ang2);
this3DEncoder = (_, rotationOrStaticAzim, rotationOrStaticElev) : basic3DEncoder
with {
x1 = (os.phasor(1, azsp), az, 1) : (+, _) : fmod : *(2 * ma.PI);
vn1 = (azsp == 0) : si.smooth(ba.tau2pole(it));
rotationOrStaticAzim = (1-vn1) * x1 + vn1 * az;
x2 = (os.phasor(1, elsp), el, 1) : (+, _) : fmod : *(2 * ma.PI);
vn2 = (elsp == 0) : si.smooth(ba.tau2pole(it));
rotationOrStaticElev = (1-vn2) * x2 + vn2 * el;
};
};
//----------------`(ho.)optimBasic3D`-------------------------
// The basic optimization has no effect and should be used for a perfect
// sphere of loudspeakers with one listener at the perfect center loudspeakers
// array.
//
// #### Usage
//
// ```
// _ : optimBasic3D(N) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
//-----------------------------------------------------
optimBasic3D(N) = par(i, (N+1) * (N+1), _);
//----------------`(ho.)optimMaxRe3D`-------------------------
// The maxRe optimization optimize energy vector. It should be used for an
// auditory confined in the center of the loudspeakers array.
//
// #### Usage
//
// ```
// _ : optimMaxRe3D(N) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
//-----------------------------------------------------
optimMaxRe3D(N) = par(i, (N+1) * (N+1), MaxRe(N, degree(i), _))
with {
// The degree l of the harmonic[l, m]
degree(index) = int(sqrt(index));
MaxRe(N, l, _)= _ * cos(l / (2*N+2) * ma.PI);
};
//----------------`(ho.)optimInPhase3D`-------------------------
// The inPhase Optimization optimizes energy vector and put all loudspeakers signals
// in phase. It should be used for an auditory.
//
// #### Usage
//
// ```
// _ : optimInPhase3D(N) : _
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
//-----------------------------------------------------
optimInPhase3D(N) = par(i, (N+1) * (N+1), InPhase(N, degree(i), _))
with {
// The degree l of the harmonic[l, m]
degree(index) = int(sqrt(index));
InPhase(N, l, _)= _ * (fact(N) * fact(N)) / (fact(N - l) * fact(N + l))
with {
fact(0) = 1;
fact(n) = n * fact(n-1);
};
};
//-------`(ho.)optim3D`----------
// Ambisonic optimizer including the three elementary optimizers:
// `(ho).optimBasic3D`, `(ho).optimMaxRe3D` and `(ho.)optimInPhase3D`.
//
// #### Usage
//
// ```
// _,_, ... : optim3D(N, ot) : _,_, ...
// ```
//
// Where:
//
// * `N`: the ambisonic order (constant numerical expression)
// * `ot` : optimization type (0 for optimBasic, 1 for optimMaxRe, 2 for optimInPhase)
//-----------------------------
optim3D(N, ot) = thisOptimizer
with {
optb = (ot == 0) : si.smoo;
optm = (ot == 1) : si.smoo;
opti = (ot == 2) : si.smoo;
bus3D = si.bus((N+1)*(N+1));
thisOptimizer = ((bus3D <: ((bus3D:ho.optimBasic3D(N)), (bus3D:ho.optimMaxRe3D(N)), (bus3D:ho.optimInPhase3D(N)))), ((optb <: bus3D), (optm <: bus3D), (opti <: bus3D))) : ro.interleave(3*(N+1)*(N+1), 2) : par(i, 3*(N+1)*(N+1), *) :> bus3D;
};
|