1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527
|
//############################# mi.lib #########################################
// This ongoing work is the fruit of a collaboration between GRAME-CNCM and
// the ANIS (Arts Numériques et Immersions Sensorielles) research group from
// GIPSA-Lab (Université Grenoble Alpes).
//
// This library implements basic 1-DoF mass-interaction physics algorithms,
// allowing to declare and connect physical elements (masses, springs, non
// linear interactions, etc.) together to form topological networks.
// Models can be assembled by hand, however in more complex scenarios it is
// recommended to use a scripting tool (such as MIMS) to generate the FAUST
// signal routing for a given physical network. Its official prefix is `mi`.
//
// [Video introduction to Mass Interaction](https://faust.grame.fr/community/events/#an-introduction-to-mass-interaction-modelling-in-faust-james-leonard-and-jerome-villeneuve)
//
// [LAC 2019 Paper](https://hal.science/hal-02270654)
//
// ## Sources
//
// The core mass-interaction algorithms implemented in this library are in the public
// domain and are disclosed in the following scientific publications:
//
// * Claude Cadoz, Annie Luciani, Jean-Loup Florens, Curtis Roads and Françoise
// Chabade. Responsive Input Devices and Sound Synthesis by Stimulation of
// Instrumental Mechanisms: The Cordis System. Computer Music Journal, Vol 8.
// No. 3, 1984.
// * Claude Cadoz, Annie Luciani and Jean Loup Florens. CORDIS-ANIMA: A Modeling
// and Simulation System for Sound and Image Synthesis: The General Formalism.
// Computer Music Journal. Vol. 17, No. 1, 1993.
// * Alexandros Kontogeorgakopoulos and Claude Cadoz. Cordis Anima Physical
// Modeling and Simulation System Analysis. In Proceedings of the Sound and Music
// Computing Conference (SMC-07), Lefkada, Greece, 2007.
// * Nicolas Castagne, Claude Cadoz, Ali Allaoui and Olivier Tache. G3: Genesis
// Software Environment Update. In Proceedings of the International Computer
// Music Conference (ICMC-09), Montreal, Canada, 2009.
// * Nicolas Castagné and Claude Cadoz. Genesis 3: Plate-forme pour la création
// musicale à l'aide des modèles physiques Cordis-Anima. In Proceedings of the
// Journée de l'Informatique Musicale, Grenoble, France, 2009.
// * Edgar Berdahl and Julius O. Smith. An Introduction to the Synth-A-Modeler
// Compiler: Modular and Open-Source Sound Synthesis using Physical Models. In
// Proceedings of the Linux Audio Conference (LAC-12), Stanford, USA, 2012.
// * James Leonard and Claude Cadoz. Physical Modelling Concepts for a Collection
// of Multisensory Virtual Musical Instruments. In Proceedings of the New
// Interfaces for Musical Expression (NIME-15) Conference, Baton Rouge, USA, 2015.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/mi.lib>
//##############################################################################
ma = library("maths.lib");
ba = library("basics.lib");
declare name "Faust mass-interaction physical modelling library";
declare version "1.1.0";
declare author "James Leonard";
declare author "Romain Michon";
declare copyright "2018-2020 GRAME / GIPSA-Lab";
//===============================Utility Functions========================================
// These utility functions are used to help certain operations (e.g. define initial
// positions and velocities for physical elements).
//========================================================================================
//------------------------`(mi.)initState`----------------------
// Used to set initial delayed position values that must be initialised
// at step 0 of the physics simulation.
//
// If you develop any of your own modules, you will need to use this (see
// `mass` and `springDamper` algorithm codes for examples).
//
// #### Usage
//
// ```
// x : initState(x0) : _
// ```
//
// Where:
//
// * `x`: position value signal
// * `x0`: initial value for position
//---------------------------------------------------------
initState(init) = R(0,init)
with{
R(n,(initn,init)) = +(1: ba.impulsify@n * initn) : R(n+1,init);
R(n,initn) = +(1 : ba.impulsify@n * initn);
};
//=================================Mass Algorithms========================================
// All mass-type physical element functions are declared here. They all expect to receive
// a force input signal and produce a position signal.
// All physical parameters are expressed in sample-rate dependant values.
//========================================================================================
//------------------------`(mi.)mass`----------------------
// Implementation of a punctual mass element.
// Takes an input force and produces output position.
//
// #### Usage
//
// ```
// mass(m, grav, x0, xr0),_ : _
// ```
//
// Where:
//
// * `m`: mass value
// * `grav`: gravity force value
// * `x0`: initial position
// * `xr0`: initial delayed position (inferred from initial velocity)
//---------------------------------------------------------
mass(m, grav, x0, x1) = equation
with{
A = 2;
B = -1;
C = 1/m;
equation = x
letrec{
'x = A*(x : initState(x0)) + B*(x' : initState((x1,x0))) + (_-grav)*(C);
};
};
//------------------------`(mi.)oscil`----------------------
// Implementation of a simple linear harmonic oscillator.
// Takes an input force and produces output position.
//
// #### Usage
//
// ```
// oscil(m, k, z, grav, x0, xr0),_ : _
// ```
//
// Where:
//
// * `m`: mass value
// * `k`: stiffness value
// * `z`: damping value
// * `grav`: gravity force value
// * `x0`: initial position
// * `xr0`: initial delayed position (inferred from initial velocity)
//---------------------------------------------------------
oscil(m, k, z, grav, x0, x1) = equation
with{
A = 2 - (k + z)/m;
B = z/m - 1;
C = 1/m;
equation = x
letrec{
'x = A*(x : initState(x0)) + B*(x' : initState((x1, x0))) + (_-grav)*(C);
};
};
//------------------------`(mi.)ground`----------------------
// Implementation of a fixed point element.
// The position output produced by this module never changes, however
// it still expects a force input signal (for compliance with connection
// rules).
//
// #### Usage
//
// ```
// ground(x0),_ : _
// ```
//
// Where:
//
// * `x0`: initial position
//---------------------------------------------------------
ground(x0) = equation
with{
// could this term be removed or simlified? Need "unused" input force signal for the routing scheme to work
C = 0;
equation = x
letrec{
'x = (x : initState(x0)) + *(C);
};
};
//------------------------`(mi.)posInput`----------------------
// Implementation of a position input module (driven by an outside
// signal). Takes two signal inputs: incoming force (which doesn't
// affect position) and the driving position signal.
//
// #### Usage
//
// ```
// posInput(x0),_,_ : _
// ```
//
// Where:
//
// * `x0`: initial position
//---------------------------------------------------------
posInput(init) = _,_ : !,_ : initState(init);
//===============================Interaction Algorithms====================================
// All interaction-type physical element functions are declared here. They each expect to
// receive two position signals (coming from the two mass-elements that they connect) and
// produce two equal and opposite force signals that must be routed back to the mass
// elements' inputs.
// All physical parameters are expressed in sample-rate dependant values.
//=========================================================================================
//------------------------`(mi.)spring`----------------------
// Implementation of a linear elastic spring interaction.
//
// #### Usage
//
// ```
// spring(k, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `k`: stiffness value
// * `x1r`: initial delayed position of mass 1 (unused here)
// * `x2r`: initial delayed position of mass 2 (unused here)
//---------------------------------------------------------
spring(k, x1r0, x2r0, x1, x2) =
k*deltapos <: *(-1),_
with{
deltapos = x1-x2;
};
//------------------------`(mi.)damper`----------------------
// Implementation of a linear damper interaction.
// Beware: in 32bit precision mode, damping forces can become
// truncated if position values are not centered around zero!
//
// #### Usage
//
// ```
// damper(z, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `z`: damping value
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
damper(z, x1r0, x2r0, x1, x2) =
z*deltavel <: *(-1),_
with{
deltavel = (x1 - x1' : initState(x1r0)) - (x2 - x2' : initState(x2r0));
};
//------------------------`(mi.)springDamper`----------------------
// Implementation of a linear viscoelastic spring-damper interaction
// (a combination of the spring and damper modules).
//
// #### Usage
//
// ```
// springDamper(k, z, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `k`: stiffness value
// * `z`: damping value
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
springDamper(k, z, x1r0, x2r0, x1, x2) =
k*deltapos +
z*deltavel <: *(-1),_
with{
deltapos = x1-x2;
deltavel = (x1 - x1' : initState(x1r0)) - (x2 - x2' : initState(x2r0));
};
//------------------------`(mi.)nlSpringDamper2`----------------------
// Implementation of a non-linear viscoelastic spring-damper interaction
// containing a quadratic term (function of squared distance).
// Beware: at high displacements, this interaction will break numerical
// stability conditions ! The `nlSpringDamperClipped` is a safer option.
//
// #### Usage
//
// ```
// nlSpringDamper2(k, q, z, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `k`: linear stiffness value
// * `q`: quadratic stiffness value
// * `z`: damping value
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
nlSpringDamper2(k, q, z, x1r0, x2r0, x1, x2) =
k*deltapos + q * ma.signum(deltapos) * pow(deltapos, 2) +
z*deltavel <: *(-1),_
with{
deltapos = x1-x2;
deltavel = (x1 - x1' : initState(x1r0)) - (x2 - x2' : initState(x2r0));
};
//------------------------`(mi.)nlSpringDamper3`----------------------
// Implementation of a non-linear viscoelastic spring-damper interaction
// containing a cubic term (function of distance^3).
// Beware: at high displacements, this interaction will break numerical
// stability conditions ! The `nlSpringDamperClipped` is a safer option.
//
// #### Usage
//
// ```
// nlSpringDamper3(k, q, z, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `k`: linear stiffness value
// * `q`: cubic stiffness value
// * `z`: damping value
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
nlSpringDamper3(k, q, z, x1r0, x2r0, x1, x2) =
k*deltapos + q * pow(deltapos, 3) +
z*deltavel <: *(-1),_
with{
deltapos = x1-x2;
deltavel = (x1 - x1' : initState(x1r0)) - (x2 - x2' : initState(x2r0));
};
//------------------------`(mi.)nlSpringDamperClipped`----------------------
// Implementation of a non-linear viscoelastic spring-damper interaction
// containing a cubic term (function of distance^3), bound by an
// upper linear stiffness (hard-clipping).
//
// This bounding means that when faced with strong displacements, the
// interaction profile will "clip" at a given point and never produce
// forces higher than the bounding equivalent linear spring, stopping models
// from becoming unstable.
//
// So far the interaction clips "hard" (with no soft-knee spline
// interpolation, etc.)
//
// #### Usage
//
// ```
// nlSpringDamperClipped(s, c, k, z, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `s`: linear stiffness value
// * `c`: cubic stiffness value
// * `k`: upper-bound linear stiffness value
// * `z`: (linear) damping value
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
nlSpringDamperClipped(s, c, k, z, x1r0, x2r0, x1, x2) =
select2(c == 0,
select2(s >= k,
select2(absdeltapos <= b,
// Overdamping induced here to prevent "locked" states...
k * deltapos + (z+0.3*k)*deltavel,
s * deltapos + c * pow(deltapos, 3) + z*deltavel
),
k * deltapos + z*deltavel
),
s * deltapos + z*deltavel
)<: *(-1),_
with{
b = sqrt(k-s)/c;
deltapos = x1-x2;
deltavel = (x1 - x1' : initState(x1r0)) - (x2 - x2' : initState(x2r0));
absdeltapos = abs(deltapos);
};
//------------------------`(mi.)nlPluck`----------------------
// Implementation of a piecewise linear plucking interaction.
// The symmetric function provides a repulsive viscoelastic interaction
// upon contact, until a tipping point is reached (when the plucking occurs).
// The tipping point depends both on the stiffness and the distance scaling
// of the interaction.
//
//
// #### Usage
//
// ```
// nlPluck(knl, scale, z, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `knl`: stiffness scaling parameter (vertical stretch of the NL function)
// * `scale`: distance scaling parameter (horizontal stretch of the NL function)
// * `z`: (linear) damping value
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
nlPluck(k, scale, z, x1r0, x2r0, x1, x2) =
select2(absdeltapos < tipdist,
select2(absdeltapos < scale,
0,
ma.signum(deltapos)* -tipdist * k + Kend * deltapos +
z* deltavel
),
(k - Kend) * -deltapos + z* deltavel
) <: *(-1),_
with{
deltapos = x1 - x2;
deltavel = (x1 - x1' : initState(x1r0)) - (x2 - x2' : initState(x2r0));
absdeltapos = abs(deltapos);
sharpness = 10;
tipdist = scale / sharpness;
Kend = k / sharpness;
};
//------------------------`(mi.)nlBow`----------------------
// Implementation of a non-linear friction based interaction
// that allows for stick-slip bowing behaviour.
// Two versions are proposed : a piecewise linear function (very
// similar to the `nlPluck`) or a mathematical approximation (see
// Stefan Bilbao's book, Numerical Sound Synthesis).
//
//
// #### Usage
//
// ```
// nlBow(znl, scale, type, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `znl`: friction scaling parameter (vertical stretch of the NL function)
// * `scale`: velocity scaling parameter (horizontal stretch of the NL function)
// * `type`: interaction profile (0 = piecewise linear, 1 = smooth function)
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
nlBow(z, scale, type, x1r0, x2r0, x1, x2) =
select2(type > 0,
select2(absdeltavel < tipvel,
select2(absdeltavel < scale,
0,
ma.signum(deltavel)* tipvel * z - Zend * deltavel
),
(z - Zend) * deltavel
),
0.63 * z * deltavel *exp(-4*pow(deltavel/scale, 2) + 1/2)
)
<: *(-1),_
with{
deltavel = (x1 - x1' : initState(x1r0)) - (x2 - x2' : initState(x2r0));
absdeltavel = abs(deltavel);
sharpness = 3;
tipvel = scale / sharpness;
Zend = z / sharpness;
};
//------------------------`(mi.)collision`----------------------
// Implementation of a collision interaction, producing linear visco-elastic
// repulsion forces when two mass elements are interpenetrating.
//
//
// #### Usage
//
// ```
// collision(k, z, thres, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `k`: collision stiffness parameter
// * `z`: collision damping parameter
// * `thres`: threshold distance for the contact between elements
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
collision(k,z,thres,x1r0,x2r0,x1,x2) =
springDamper(k,z,x1r0,x2r0,x1+thres,x2) : (select2(comp,0,_),select2(comp,0,_))
with{
comp = (x2-x1) < thres;
};
//------------------------`(mi.)nlCollisionClipped`----------------------
// Implementation of a collision interaction, producing non-linear
// visco-elastic repulsion forces when two mass elements are interpenetrating.
// Bound by an upper stiffness value to maintain stability.
// This interaction is particularly useful for more realistic contact dynamics
// (greater difference in velocity provides sharper contacts, and reciprocally).
//
// #### Usage
//
// ```
// nlCollisionClipped(s, c, k, z, thres, x1r, x2r),_,_ : _,_
// ```
//
// Where:
//
// * `s`: collision linear stiffness parameter
// * `c`: collision cubic stiffness parameter
// * `k`: collision upper-bounding stiffness parameter
// * `z`: collision damping parameter
// * `thres`: threshold distance for the contact between elements
// * `x1r`: initial delayed position of mass 1
// * `x2r`: initial delayed position of mass 2
//---------------------------------------------------------
nlCollisionClipped(s, c, k, z, thres, x1r0, x2r0, x1, x2) =
nlSpringDamperClipped(s,c,k,z,x1r0,x2r0,x1+thres,x2) : (select2(comp,0,_),select2(comp,0,_))
with{
comp = (x2-x1) < thres;
};
|