1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093
|
//############################## oscillators.lib ######################################
// This library contains a collection of sound generators. Its official prefix is `os`.
//
// The oscillators library is organized into 9 sections:
//
// * [Wave-Table-Based Oscillators](#wave-table-based-oscillators)
// * [Low Frequency Oscillators](#low-frequency-oscillators)
// * [Low Frequency Sawtooths](#low-frequency-sawtooths)
// * [Alias-Suppressed Sawtooth](#alias-suppressed-sawtooth)
// * [Alias-Suppressed Pulse, Square, and Impulse Trains](#alias-suppressed-pulse-square-and-impulse-trains)
// * [Filter-Based Oscillators](#filter-based-oscillators)
// * [Waveguide-Resonator-Based Oscillators](#waveguide-resonator-based-oscillators)
// * [Casio CZ Oscillators](#casio-cz-oscillators)
// * [PolyBLEP-Based Oscillators](#polyblep-based-oscillators)
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/oscillators.lib>
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file, GRAME section
Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("maths.lib");
ba = library("basics.lib");
fi = library("filters.lib");
si = library("signals.lib");
declare name "Faust Oscillator Library";
declare version "1.6.0";
// This library contains platform specific constants
pl = library("platform.lib");
//======================Oscillators based on mathematical functions===============
//
// Note that there is a numerical problem with several phasor functions built using the internal
// `phasor_imp`. The reason is that the incremental step is smaller than `ma.EPSILON`, which happens with very small frequencies,
// so it will have no effect when summed to 1, but it will be enough to make the fractional function wrap
// around when summed to 0. An example of this problem can be observed when running the following code:
//
// `process = os.phasor(1.0, -.001);`
//
// The output of this program is the sequence 1, 0, 1, 0, 1... This happens because the negative incremental
// step is greater than `-ma.EPSILON`, which will have no effect when summed to 1, but it will be significant
// enough to make the fractional function wrap around when summed to 0.
//
// The incremental step can be clipped to guarantee that the phasor will
// always run correctly for its full cycle, otherwise, for increments smaller than `ma.EPSILON`,
// phasor would initially run but it'd eventually get stuck once the output gets big enough.
//
// All functions using `phasor_imp` are affected by this problem, but a safer
// version is implemented, and can be used alternatively by setting `SAFE=1` in the environment using
// [explicit sustitution](https://faustdoc.grame.fr/manual/syntax/#explicit-substitution) syntax.
//
// For example: `process = os[SAFE=1;].phasor(1.0, -.001);` will use the safer implementation of `phasor_imp`.
//=================================================================================
//=========================Wave-Table-Based Oscillators===================================
// Oscillators using tables. The table size is set by the
// [pl.tablesize](https://github.com/grame-cncm/faustlibraries/blob/master/platform.lib) constant.
//========================================================================================
// Global parameter to use the safer version of `phasor_imp`, but which
// could be used in other functions as well.
SAFE = 0; // 0: use the faster version, 1: use the safer version
//-----------------------`(os.)sinwaveform`------------------------
// Sine waveform ready to use with a `rdtable`.
//
// #### Usage
//
// ```
// sinwaveform(tablesize) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
//------------------------------------------------------------
sinwaveform(tablesize) =
sin(float(ba.period(tablesize)) * (2.0 * ma.PI) / float(tablesize));
//-----------------------`(os.)coswaveform`------------------------
// Cosine waveform ready to use with a `rdtable`.
//
// #### Usage
//
// ```
// coswaveform(tablesize) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
//------------------------------------------------------------
coswaveform(tablesize) =
cos(float(ba.period(tablesize)) * (2.0 * ma.PI) / float(tablesize));
// Possibly faster version using integer arithmetic
phasor_env(freq, N) = environment {
//------- GLOBAL PARAMS
nbits = 31;
tablesize = 1<<N;
accuracy = int(nbits - N);
mask = (1<<nbits)-1;
inc(step) = int(tablesize * step * (1<<accuracy));
//------- LAMBDA DSP CASE
lambda(inc_op) = (inc_op : &(mask)) ~ _ : >>(accuracy) : /(tablesize);
//------- MINIMAL CASE
hsp(0,0) = lambda(+(inc(freq/ma.SR)'));
//------- GENERAL CASE
hsp(reset,phase) = lambda(select2(hard_reset,+(inc(freq/ma.SR)),inc(phase)))
with {
hard_reset = (1-1')|reset;
};
};
declare phasor_env author "Pierre Mascarade Relano, Maxime Sirbu, Stéphane Letz";
// Generic phasor with `reset` and `phase` parameters to be specialised in concrete use-cases.
phasor_imp(freq, reset, phase) = (select2(hard_reset, +(incr(SAFE)), phase) : ma.decimal) ~ _
with {
incr_aux = freq/ma.SR;
// Faster but less accurate version
incr(0) = incr_aux;
// To make sure that the incremental step is greater or equal to EPSILON or
// less than or equal to -EPSILON to avoid numerical problems.
// A frequency of 0Hz can still be used to freeze the phasor.
incr(1)= (freq != 0) * ba.if(freq < 0, min(-1.0 * ma.EPSILON, incr_aux), max(ma.EPSILON, incr_aux));
// To correctly start at `phase` at the first sample
hard_reset = (1-1')|reset;
};
// Possibly faster version using integer arithmetic
// phasor_imp(freq, reset, phase) = phasor_env(freq, 16).hsp(reset, phase);
// Version to be used with tables
phasor_table(tablesize, freq, reset, phase) = phasor_imp(freq, reset, phase) : *(float(tablesize));
//-----------------------`(os.)phasor`------------------------
// A simple phasor to be used with a `rdtable`.
// `phasor` is a standard Faust function.
//
// #### Usage
//
// ```
// phasor(tablesize,freq) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
// * `freq`: the frequency in Hz
//
// Note that `tablesize` is just a multiplier for the output of a unit-amp phasor
// so `phasor(1.0, freq)` can be used to generate a phasor output in the range [0, 1[.
//------------------------------------------------------------
phasor(tablesize, freq) = phasor_table(tablesize, freq, 0, 0);
//-----------------------`(os.)hs_phasor`------------------------
// Hardsyncing phasor to be used with a `rdtable`.
//
// #### Usage
//
// ```
// hs_phasor(tablesize,freq,reset) : _
// ```
//
// Where:
//
// * `tablesize`: the table size
// * `freq`: the frequency in Hz
// * `reset`: a reset signal, reset phase to 0 when equal to 1
//---------------------------------------------------------
declare hs_phasor author "Mike Olsen, revised by Stéphane Letz";
hs_phasor(tablesize, freq, reset) = phasor_table(tablesize, freq, reset, 0);
//-----------------------`(os.)hsp_phasor`------------------------
// Hardsyncing phasor with selectable phase to be used with a `rdtable`.
//
// #### Usage
//
// ```
// hsp_phasor(tablesize,freq,reset,phase)
// ```
//
// Where:
//
// * `tablesize`: the table size
// * `freq`: the frequency in Hz
// * `reset`: reset the oscillator to phase when equal to 1
// * `phase`: phase between 0 and 1
//---------------------------------------------------------
declare hsp_phasor author "Christophe Lebreton, revised by Stéphane Letz";
hsp_phasor(tablesize, freq, reset, phase) = phasor_table(tablesize, freq, reset, phase);
//-----------------------`(os.)oscsin`------------------------
// Sine wave oscillator.
// `oscsin` is a standard Faust function.
//
// #### Usage
//
// ```
// oscsin(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
//------------------------------------------------------------
oscsin(freq) = rdtable(tablesize, sinwaveform(tablesize), int(phasor(tablesize,freq)))
with {
tablesize = pl.tablesize;
};
//-----------------------`(os.)hs_oscsin`------------------------
// Sin lookup table with hardsyncing phase.
//
// #### Usage
//
// ```
// hs_oscsin(freq,reset) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
// * `reset`: reset the oscillator to 0 when equal to 1
//---------------------------------------------------------
declare hs_oscsin author "Mike Olsen";
hs_oscsin(freq,reset) = rdtable(tablesize, sinwaveform(tablesize), int(hs_phasor(tablesize,freq,reset)))
with {
tablesize = pl.tablesize;
};
//-----------------------`(os.)osccos`------------------------
// Cosine wave oscillator.
//
// #### Usage
//
// ```
// osccos(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
//------------------------------------------------------------
osccos(freq) = rdtable(tablesize, coswaveform(tablesize), int(phasor(tablesize,freq)))
with {
tablesize = pl.tablesize;
};
//-----------------------`(os.)hs_osccos`------------------------
// Cos lookup table with hardsyncing phase.
//
// #### Usage
//
// ```
// hs_osccos(freq,reset) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
// * `reset`: reset the oscillator to 0 when equal to 1
//---------------------------------------------------------
declare hs_osccos author "Stéphane Letz";
hs_osccos(freq,reset) = rdtable(tablesize, coswaveform(tablesize), int(hs_phasor(tablesize,freq,reset)))
with {
tablesize = pl.tablesize;
};
//-----------------------`(os.)oscp`------------------------
// A sine wave generator with controllable phase.
//
// #### Usage
//
// ```
// oscp(freq,phase) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
// * `phase`: the phase in radian
//------------------------------------------------------------
oscp(freq,phase) = oscsin(freq) * cos(phase) + osccos(freq) * sin(phase);
//-----------------------`(os.)osci`------------------------
// Interpolated phase sine wave oscillator.
//
// #### Usage
//
// ```
// osci(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
//------------------------------------------------------------
osci(freq) = s1 + d * (s2 - s1)
with {
tablesize = pl.tablesize;
i = int(phasor(tablesize,freq));
d = ma.decimal(phasor(tablesize,freq));
s1 = rdtable(tablesize+1,sinwaveform(tablesize),i);
s2 = rdtable(tablesize+1,sinwaveform(tablesize),i+1);
};
//-----------------------`(os.)osc`------------------------
// Default sine wave oscillator (same as [oscsin](#oscsin)).
// `osc` is a standard Faust function.
//
// #### Usage
//
// ```
// osc(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
//------------------------------------------------------------
osc = oscsin;
//-----------------------`(os.)m_oscsin`------------------------
// Sine wave oscillator based on the `sin` mathematical function.
//
// #### Usage
//
// ```
// m_oscsin(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
//------------------------------------------------------------
m_oscsin(freq) = lf_sawpos(freq) : *(2*ma.PI) : sin;
//-----------------------`(os.)m_osccos`------------------------
// Sine wave oscillator based on the `cos` mathematical function.
//
// #### Usage
//
// ```
// m_osccos(freq) : _
// ```
//
// Where:
//
// * `freq`: the frequency in Hz
//------------------------------------------------------------
m_osccos(freq) = lf_sawpos(freq) : *(2*ma.PI) : cos;
// end GRAME section
//########################################################################################
/************************************************************************
FAUST library file, jos section
Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2022 by Julius O. Smith III <jos@ccrma.stanford.edu>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.
The MarkDown comments in this section are Copyright 2016-2017 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees)
************************************************************************/
//===============================Low Frequency Oscillators===============================
// Low Frequency Oscillators (LFOs) have prefix `lf_`
// (no aliasing suppression, since it is inaudible at LF).
// Use `sawN` and its derivatives for audio oscillators with suppressed aliasing.
//==================================================================
//--------`(os.)lf_imptrain`----------
// Unit-amplitude low-frequency impulse train.
// `lf_imptrain` is a standard Faust function.
// #### Usage
//
// ```
// lf_imptrain(freq) : _
// ```
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
lf_imptrain(freq) = lf_sawpos(freq)<:-(mem)<0; // definition below
//--------`(os.)lf_pulsetrainpos`----------
// Unit-amplitude nonnegative LF pulse train, duty cycle between 0 and 1.
//
//
// #### Usage
//
// ```
// lf_pulsetrainpos(freq, duty) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `duty`: duty cycle between 0 and 1
//------------------------------------------------------------
lf_pulsetrainpos(freq,duty) = float(lf_sawpos(freq) <= duty);
//pulsetrainpos = lf_pulsetrainpos; // for backward compatibility
//--------`(os.)lf_pulsetrain`----------
// Unit-amplitude zero-mean LF pulse train, duty cycle between 0 and 1.
//
// #### Usage
//
// ```
// lf_pulsetrain(freq,duty) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `duty`: duty cycle between 0 and 1
//------------------------------------------------------------
lf_pulsetrain(freq,duty) = 2.0*lf_pulsetrainpos(freq,duty) - 1.0;
//--------`(os.)lf_squarewavepos`----------
// Positive LF square wave in [0,1]
//
// #### Usage
//
// ```
// lf_squarewavepos(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
lf_squarewavepos(freq) = lf_pulsetrainpos(freq,0.5);
// squarewavepos = lf_squarewavepos; // for backward compatibility
//--------`(os.)lf_squarewave`----------
// Zero-mean unit-amplitude LF square wave.
// `lf_squarewave` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_squarewave(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
lf_squarewave(freq) = 2.0*lf_squarewavepos(freq) - 1.0;
// squarewave = lf_squarewave; // for backward compatibility
//--------`(os.)lf_trianglepos`----------
// Positive unit-amplitude LF positive triangle wave.
//
// #### Usage
//
// ```
// lf_trianglepos(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
lf_trianglepos(freq) = 1.0-abs(saw1(freq)); // saw1 defined below
//----------`(os.)lf_triangle`----------
// Zero-mean unit-amplitude LF triangle wave.
// `lf_triangle` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_triangle(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
declare lf_triangle author "Bart Brouns";
declare lf_triangle licence "STK-4.3";
lf_triangle(freq) = 2.0*lf_trianglepos(freq) - 1.0;
//================== Low Frequency Sawtooths ====================
// Sawtooth waveform oscillators for virtual analog synthesis et al.
// The 'simple' versions (`lf_rawsaw`, `lf_sawpos` and `saw1`), are mere samplings of
// the ideal continuous-time ("analog") waveforms. While simple, the
// aliasing due to sampling is quite audible. The differentiated
// polynomial waveform family (`saw2`, `sawN`, and derived functions)
// do some extra processing to suppress aliasing (not audible for
// very low fundamental frequencies). According to Lehtonen et al.
// (JASA 2012), the aliasing of `saw2` should be inaudible at fundamental
// frequencies below 2 kHz or so, for a 44.1 kHz sampling rate and 60 dB SPL
// presentation level; fundamentals 415 and below required no aliasing
// suppression (i.e., `saw1` is ok).
//=====================================================================
//-----------------`(os.)lf_rawsaw`--------------------
// Simple sawtooth waveform oscillator between 0 and period in samples.
//
// #### Usage
//
// ```
// lf_rawsaw(periodsamps) : _
// ```
//
// Where:
//
// * `periodsamps`: number of periods per samples
//---------------------------------------------------------
lf_rawsaw(periodsamps) = (_,periodsamps : fmod) ~ +(1.0);
//-----------------`(os.)lf_sawpos`--------------------
// Simple sawtooth waveform oscillator between 0 and 1.
//
// #### Usage
//
// ```
// lf_sawpos(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//
//---------------------------------------------------------
declare lf_sawpos author "Bart Brouns, revised by Stéphane Letz";
declare lf_sawpos licence "STK-4.3";
lf_sawpos(freq) = phasor_imp(freq, 0, 0);
//-----------------`(os.)lf_sawpos_phase`--------------------
// Simple sawtooth waveform oscillator between 0 and 1
// with phase control.
//
// #### Usage
//
// ```
// lf_sawpos_phase(freq, phase) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `phase`: phase between 0 and 1
//---------------------------------------------------------
declare lf_sawpos_phase author "Bart Brouns, revised by Stéphane Letz";
declare lf_sawpos_phase licence "STK-4.3";
lf_sawpos_phase(freq,phase) = phasor_imp(freq, 0, phase);
//-----------------`(os.)lf_sawpos_reset`--------------------
// Simple sawtooth waveform oscillator between 0 and 1
// with reset.
//
// #### Usage
//
// ```
// lf_sawpos_reset(freq,reset) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `reset`: reset the oscillator to 0 when equal to 1
//
//---------------------------------------------------------
declare lf_sawpos_reset author "Bart Brouns, revised by Stéphane Letz";
declare lf_sawpos_reset licence "STK-4.3";
lf_sawpos_reset(freq,reset) = phasor_imp(freq, reset, 0);
//-----------------`(os.)lf_sawpos_phase_reset`--------------------
// Simple sawtooth waveform oscillator between 0 and 1
// with phase control and reset.
//
// #### Usage
//
// ```
// lf_sawpos_phase_reset(freq,phase,reset) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `phase`: phase between 0 and 1
// * `reset`: reset the oscillator to phase when equal to 1
//
//---------------------------------------------------------
declare lf_sawpos_phase_reset author "Bart Brouns, revised by Stéphane Letz";
declare lf_sawpos_phase_reset licence "STK-4.3";
lf_sawpos_phase_reset(freq,phase,reset) = phasor_imp(freq, reset, phase);
//-----------------`(os.)lf_saw`--------------------
// Simple sawtooth waveform oscillator between -1 and 1.
// `lf_saw` is a standard Faust function.
//
// #### Usage
//
// ```
// lf_saw(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//---------------------------------------------------------
declare saw1 author "Bart Brouns";
declare saw1 licence "STK-4.3";
saw1(freq) = 2.0 * lf_sawpos(freq) - 1.0;
lf_saw(freq) = saw1(freq);
//================== Alias-Suppressed Sawtooth ====================
//-----------------`(os.)sawN`--------------------
// Alias-Suppressed Sawtooth Audio-Frequency Oscillator using Nth-order polynomial transitions
// to reduce aliasing.
//
// `sawN(N,freq)`, `sawNp(N,freq,phase)`, `saw2dpw(freq)`, `saw2(freq)`, `saw3(freq)`,
// `saw4(freq)`, `sawtooth(freq)`, `saw2f2(freq)`, `saw2f4(freq)`
//
// #### Usage
//
// ```
// sawN(N,freq) : _ // Nth-order aliasing-suppressed sawtooth using DPW method (see below)
// sawNp(N,freq,phase) : _ // sawN with phase offset feature
// saw2dpw(freq) : _ // saw2 using DPW
// saw2ptr(freq) : _ // saw2 using the faster, stateless PTR method
// saw2(freq) : _ // DPW method, but subject to change if a better method emerges
// saw3(freq) : _ // sawN(3)
// saw4(freq) : _ // sawN(4)
// sawtooth(freq) : _ // saw2
// saw2f2(freq) : _ // saw2dpw with 2nd-order droop-correction filtering
// saw2f4(freq) : _ // saw2dpw with 4th-order droop-correction filtering
// ```
//
// Where:
//
// * `N`: polynomial order, a constant numerical expression between 1 and 4
// * `freq`: frequency in Hz
// * `phase`: phase between 0 and 1
//
// #### Method
// Differentiated Polynomial Wave (DPW).
//
// ##### Reference
// "Alias-Suppressed Oscillators based on Differentiated Polynomial Waveforms",
// Vesa Valimaki, Juhan Nam, Julius Smith, and Jonathan Abel,
// IEEE Tr. Audio, Speech, and Language Processing (IEEE-ASLP),
// Vol. 18, no. 5, pp 786-798, May 2010.
// 10.1109/TASL.2009.2026507.
//
// #### Notes
// The polynomial order `N` is limited to 4 because noise has been
// observed at very low `freq` values. (LFO sawtooths should of course
// be generated using `lf_sawpos` instead.)
//-----------------------------------------------------------------
declare sawN author "Julius O. Smith III";
declare sawN license "STK-4.3";
// --- sawN for N = 1 to 4 ---
// Orders 5 and 6 have noise at low fundamentals: MAX_SAW_ORDER = 6; MAX_SAW_ORDER_NEXTPOW2 = 8;
MAX_SAW_ORDER = 4;
MAX_SAW_ORDER_NEXTPOW2 = 8; // par cannot handle the case of 0 elements
sawN(N,freq) = saw1l : poly(Nc) : D(Nc-1) : gate(Nc-1)
with {
Nc = max(1,min(N,MAX_SAW_ORDER));
clippedFreq = max(20.0,abs(freq)); // use lf_sawpos(freq) for LFOs (freq < 20 Hz)
saw1l = 2*lf_sawpos(clippedFreq) - 1; // zero-mean, amplitude +/- 1
poly(1,x) = x;
poly(2,x) = x*x;
poly(3,x) = x*x*x - x;
poly(4,x) = x*x*(x*x - 2.0);
poly(5,x) = x*(7.0/3 + x*x*(-10.0/3.0 + x*x));
poly(6,x) = x*x*(7.0 + x*x*(-5.0 + x*x));
p0n = float(ma.SR)/clippedFreq; // period in samples
diff1(x) = (x - x')/(2.0/p0n);
diff(N) = seq(n,N,diff1); // N diff1s in series
factorial(0) = 1;
factorial(i) = i * factorial(i-1);
D(0) = _;
D(i) = diff(i)/factorial(i+1);
gate(N) = *(1@(N)); // delayed step for blanking startup glitch
};
//------------------`(os.)sawNp`--------------------------------
// Same as `(os.)sawN` but with a controllable waveform phase.
//
// #### Usage
//
// ```
// sawNp(N,freq,phase) : _
// ```
//
// where
//
// * `N`: waveform interpolation polynomial order 1 to 4 (constant integer expression)
// * `freq`: frequency in Hz
// * `phase`: waveform phase as a fraction of one period (rounded to nearest sample)
//
// #### Implementation Notes
//
// The phase offset is implemented by delaying `sawN(N,freq)` by
// `round(phase*ma.SR/freq)` samples, for up to 8191 samples.
// The minimum sawtooth frequency that can be delayed a whole period
// is therefore `ma.SR/8191`, which is well below audibility for normal
// audio sampling rates.
//
//-----------------------------------------------------------------
declare sawNp author "Julius O. Smith III";
declare sawNp license "STK-4.3";
// --- sawNp for N = 1 to 4 ---
// Phase offset = delay (max 8191 samples is more than one period of audio):
sawNp(N,freq,phase) = sawN(N,freq) : @(max(0,min(8191,int(0.5+phase*ma.SR/freq))));
//------------------`(os.)saw2, (os.)saw3, (os.)saw4`--------------
// Alias-Suppressed Sawtooth Audio-Frequency Oscillators of order 2, 3, 4.
//
// #### Usage
//
// ```
// saw2(freq) : _
// saw3(freq) : _
// saw4(freq) : _
// ```
//
// where
//
// * `freq`: frequency in Hz
//
// ##### References
// See `sawN` above.
//
// #### Implementation Notes
//
// Presently, only `saw2` uses the PTR method, while `saw3` and `saw4` use DPW.
// This is because PTR has been implemented and tested for the 2nd-order case only.
//
//------------------------------------------------------------------
saw2 = saw2ptr; // "faustlibraries choice"
saw3 = sawN(3); // only choice available right now
saw4 = sawN(4); // only choice available right now
//---------------------------`(os.)saw2ptr`---------------------------
// Alias-Suppressed Sawtooth Audio-Frequency Oscillator
// using Polynomial Transition Regions (PTR) for order 2.
//
// #### Usage
//
// ```
// saw2ptr(freq) : _
// ```
//
// where
//
// * `freq`: frequency in Hz
//
// ##### Implementation
//
// Polynomial Transition Regions (PTR) method for aliasing suppression.
//
// ##### References
//
// * Kleimola, J.; Valimaki, V., "Reducing Aliasing from Synthetic Audio
// Signals Using Polynomial Transition Regions," in Signal Processing
// Letters, IEEE , vol.19, no.2, pp.67-70, Feb. 2012
// * <https://aaltodoc.aalto.fi/bitstream/handle/123456789/7747/publication6.pdf?sequence=9>
// * <http://research.spa.aalto.fi/publications/papers/spl-ptr/>
//
// ##### Notes
//
// Method PTR may be preferred because it requires less
// computation and is stateless which means that the frequency `freq`
// can be modulated arbitrarily fast over time without filtering
// artifacts. For this reason, `saw2` is presently defined as `saw2ptr`.
//
//--------------------------------------------------------
declare saw2ptr author "Julius O. Smith III";
declare saw2ptr license "STK-4.3";
// specialized reimplementation:
saw2ptr(freq) = y with { // newer PTR version (stateless - freq can vary at any speed)
p0 = float(ma.SR)/float(max(ma.EPSILON,abs(freq))); // period in samples
t0 = 1.0/p0; // phase increment
p = ((_<:(-(1)<:_,_),_) <: selector1,selector2) ~(+(t0)):!,_;
selector1 = select2(<(0)); // for feedback
selector2 = select2(<(0), (_<:_,(*(1-p0):+(1)):+), _); // for output
y = 2*p-1;
};
//----------------------`(os.)saw2dpw`---------------------
// Alias-Suppressed Sawtooth Audio-Frequency Oscillator
// using the Differentiated Polynomial Waveform (DWP) method.
//
// #### Usage
//
// ```
// saw2dpw(freq) : _
// ```
//
// where
//
// * `freq`: frequency in Hz
//
// This is the original Faust `saw2` function using the DPW method.
// Since `saw2` is now defined as `saw2ptr`, the DPW version
// is now available as `saw2dwp`.
//--------------------------------------------------------
declare saw2dpw author "Julius O. Smith III";
declare saw2dpw license "STK-4.3";
saw2dpw(freq) = saw1(freq) <: * <: -(mem) : *(0.25'*ma.SR/freq);
//------------------`(os.)sawtooth`--------------------------------
// Alias-suppressed aliasing-suppressed sawtooth oscillator, presently defined as `saw2`.
// `sawtooth` is a standard Faust function.
//
// #### Usage
//
// ```
// sawtooth(freq) : _
// ```
//
// with
//
// * `freq`: frequency in Hz
//--------------------------------------------------------
sawtooth = saw2; // default choice for sawtooth signal - see also sawN
//------------------`(os.)saw2f2, (os.)saw2f4`--------------------------------
// Alias-Suppressed Sawtooth Audio-Frequency Oscillator with Order 2 or 4 Droop Correction Filtering.
//
// #### Usage
//
// ```
// saw2f2(freq) : _
// saw2f4(freq) : _
// ```
//
// with
//
// * `freq`: frequency in Hz
//
// In return for aliasing suppression, there is some attenuation near half the sampling rate.
// This can be considered as beneficial, or it can be compensated with a high-frequency boost.
// The boost filter is second-order for `saw2f2` and fourth-order for `saw2f4`, and both are designed
// for the DWP case and therefore use `saw2dpw`.
// See Figure 4(b) in the DPW reference for a plot of the slight droop in the DPW case.
//--------------------------------------------------------
declare saw2f2 author "Julius O. Smith III";
declare saw2f2 license "STK-4.3";
// --- Correction-filtered versions of saw2: saw2f2, saw2f4 -----
saw2f2 = saw2dpw : cf2 with {
cf2 = fi.tf2(1.155704605878911, 0.745184288225518,0.040305967265900,
0.823765146386639, 0.117420665547108);
};
declare saw2f4 author "Julius O. Smith III";
declare saw2f4 license "STK-4.3";
saw2f4 = saw2dpw : cf4 with {
cf4 = fi.iir((1.155727435125014, 2.285861038554662,
1.430915027294021, 0.290713280893317, 0.008306401748854),
(2.156834679164532, 1.559532244409321, 0.423036498118354,
0.032080681130972));
};
//=========Alias-Suppressed Pulse, Square, and Impulse Trains============
// Alias-Suppressed Pulse, Square and Impulse Trains.
//
// `pulsetrainN`, `pulsetrain`, `squareN`, `square`, `imptrainN`, `imptrain`,
// `triangleN`, `triangle`
//
// All are zero-mean and meant to oscillate in the audio frequency range.
// Use simpler sample-rounded `lf_*` versions above for LFOs.
//
// #### Usage
//
// ```
// pulsetrainN(N,freq,duty) : _
// pulsetrain(freq, duty) : _ // = pulsetrainN(2)
//
// squareN(N,freq) : _
// square : _ // = squareN(2)
//
// imptrainN(N,freq) : _
// imptrain : _ // = imptrainN(2)
//
// triangleN(N,freq) : _
// triangle : _ // = triangleN(2)
// ```
//
// Where:
//
// * `N`: polynomial order, a constant numerical expression
// * `freq`: frequency in Hz
//====================================================================
//------------------`(os.)impulse`--------------------------------
// One-time impulse generated when the Faust process is started.
// `impulse` is a standard Faust function.
//
// #### Usage
//
// ```
// impulse : _
// ```
//--------------------------------------------------------
impulse = 1-1';
//------------------`(os.)pulsetrainN`--------------------------------
// Alias-suppressed pulse train oscillator.
//
// #### Usage
//
// ```
// pulsetrainN(N,freq,duty) : _
// ```
//
// Where:
//
// * `N`: order, as a constant numerical expression
// * `freq`: frequency in Hz
// * `duty`: duty cycle between 0 and 1
//--------------------------------------------------------
pulsetrainN(N,freq,duty) = diffdel(sawN(N,freqC),del) with {
// non-interpolated-delay version: diffdel(x,del) = x - x@int(del+0.5);
// linearly interpolated delay version (sounds good to me):
diffdel(x,del) = x-x@int(del)*(1-ma.frac(del))-x@(int(del)+1)*ma.frac(del);
// Third-order Lagrange interpolated-delay version (see filters.lib):
// diffdel(x,del) = x - fdelay3(DELPWR2,max(1,min(DELPWR2-2,ddel)));
DELPWR2 = 2048; // Needs to be a power of 2 when fdelay*() used above.
delmax = DELPWR2-1; // arbitrary upper limit on diff delay (duty=0.5)
SRmax = 96000.0; // assumed upper limit on sampling rate
fmin = SRmax / float(2.0*delmax); // 23.4 Hz (audio freqs only)
freqC = max(freq,fmin); // clip frequency at lower limit
period = (float(ma.SR) / freqC); // actual period
ddel = duty * period; // desired delay
del = max(0,min(delmax,ddel));
};
//------------------`(os.)pulsetrain`--------------------------------
// Alias-suppressed pulse train oscillator. Based on `pulsetrainN(2)`.
// `pulsetrain` is a standard Faust function.
//
// #### Usage
//
// ```
// pulsetrain(freq,duty) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
// * `duty`: duty cycle between 0 and 1
//--------------------------------------------------------
pulsetrain = pulsetrainN(2);
//------------------`(os.)squareN`--------------------------------
// Alias-suppressed square wave oscillator.
//
// #### Usage
//
// ```
// squareN(N,freq) : _
// ```
//
// Where:
//
// * `N`: order, as a constant numerical expression
// * `freq`: frequency in Hz
//--------------------------------------------------------
squareN(N,freq) = pulsetrainN(N,freq,0.5);
//------------------`(os.)square`--------------------------------
// Alias-suppressed square wave oscillator. Based on `squareN(2)`.
// `square` is a standard Faust function.
//
// #### Usage
//
// ```
// square(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//--------------------------------------------------------
square = squareN(2);
//------------------`(os.)imptrainN`--------------------------------
// Alias-suppressed impulse train generator.
//
// #### Usage
//
// ```
// imptrainN(N,freq) : _
// ```
//
// Where:
//
// * `N`: order, as a constant numerical expression
// * `freq`: frequency in Hz
//--------------------------------------------------------
imptrainN(N,freq) = impulse + 0.5*ma.diffn(sawN(N,freq));
//------------------`(os.)imptrain`--------------------------------
// Alias-suppressed impulse train generator. Based on `imptrainN(2)`.
// `imptrain` is a standard Faust function.
//
// #### Usage
//
// ```
// imptrain(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//--------------------------------------------------------
imptrain = imptrainN(2); // default based on saw2
//------------------`(os.)triangleN`--------------------------------
// Alias-suppressed triangle wave oscillator.
//
// #### Usage
//
// ```
// triangleN(N,freq) : _
// ```
//
// Where:
//
// * `N`: order, as a constant numerical expression
// * `freq`: frequency in Hz
//--------------------------------------------------------
triangleN(N,freq) = squareN(N,freq) : fi.pole(p) : *(gain) with {
gain = 4.0*freq/ma.SR; // for aproximate unit peak amplitude
p = 0.999;
};
//------------------`(os.)triangle`--------------------------------
// Alias-suppressed triangle wave oscillator. Based on `triangleN(2)`.
// `triangle` is a standard Faust function.
//
// #### Usage
//
// ```
// triangle(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//--------------------------------------------------------
triangle = triangleN(2); // default based on saw2
//===============================Filter-Based Oscillators=================================
// Filter-Based Oscillators.
//
// #### Usage
//
// ```
// osc[b|rq|rs|rc|s](freq), where freq = frequency in Hz.
// ```
//
// #### References
//
// * <http://lac.linuxaudio.org/2012/download/lac12-slides-jos.pdf>
// * <https://ccrma.stanford.edu/~jos/pdf/lac12-paper-jos.pdf>
//========================================================================================
//--------------------------`(os.)oscb`--------------------------------
// Sinusoidal oscillator based on the biquad.
//
// #### Usage
//
// ```
// oscb(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
oscb(f) = impulse : fi.tf2(1,0,0,a1,1)
with {
a1 = -2*cos(2*ma.PI*f/ma.SR);
};
//--------------------------`(os.)oscrq`---------------------------
// Sinusoidal (sine and cosine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrq(freq) : _,_
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
oscrq(f) = impulse : fi.nlf2(f,1); // sine and cosine outputs
//--------------------------`(os.)oscrs`---------------------------
// Sinusoidal (sine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrs(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
oscrs(f) = impulse : fi.nlf2(f,1) : _,!; // sine
//--------------------------`(os.)oscrc`---------------------------
// Sinusoidal (cosine) oscillator based on 2D vector rotation,
// = undamped "coupled-form" resonator
// = lossless 2nd-order normalized ladder filter.
//
// #### Usage
//
// ```
// oscrc(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
oscrc(f) = impulse : fi.nlf2(f,1) : !,_; // cosine
oscrp(f,p) = oscrq(f) : *(cos(p)), *(sin(p)) : + ; // p=0 for sine, p=PI/2 for cosine, etc.
oscr = oscrs; // default = sine (starts without a pop)
//--------------------------`(os.)oscs`--------------------------------
// Sinusoidal oscillator based on the state variable filter
// = undamped "modified-coupled-form" resonator
// = "magic circle" algorithm used in graphics.
//
// #### Usage
//
// ```
// oscs(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
oscs(f) = (*(-1) : sint(wn) : sintp(wn,impulse)) ~ _
with {
wn = 2*ma.PI*f/ma.SR; // approximate
// wn = 2*sin(PI*f/SR); // exact
sint(x) = *(x) : + ~ _ ; // frequency-scaled integrator
sintp(x,y) = *(x) : +(y): + ~ _; // same + state input
};
//-----------------`(os.)quadosc`--------------------
// Quadrature (cosine and sine) oscillator based on QuadOsc by Martin Vicanek.
//
// #### Usage
//
// ```
// quadosc(freq) : _,_
// ```
//
// where
//
// * `freq`: frequency in Hz
//
// #### Reference
// * <https://vicanek.de/articles/QuadOsc.pdf>
//------------------------------------------------------------
// Authors:
// Dario Sanfilippo <sanfilippo.dario@gmail.com>
// and Oleg Nesterov (JOS ed.)
quadosc(f) = tick ~ (_,_)
with {
k1 = tan(f * ma.PI / ma.SR);
k2 = 2 * k1 / (1 + k1 * k1);
tick(u_0,v_0) = u_1,v_1
with {
tmp = u_0 - k1 * v_0;
v_1 = v_0 + k2 * tmp;
u_1 = tmp - k1 * v_1 : select2(1',1);
};
};
//-----------------------------`(os.)sidebands`--------------------------------------
// Adds harmonics to quad oscillator.
//
// #### Usage
//
// ```
// cos(x),sin(x) : sidebands(vs) : _,_
// ```
//
// Where:
//
// * `vs` : list of amplitudes
//
// #### Example test program
//
// ```
// cos(x),sin(x) : sidebands((10,20,30))
// ```
//
// outputs:
//
// ```
// 10*cos(x) + 20*cos(2*x) + 30*cos(3*x),
// 10*sin(x) + 20*sin(2*x) + 30*sin(3*x);
// ```
//
// The following:
//
// ```
// process = os.quadosc(F) : sidebands((10,20,30))
// ```
//
// is (modulo floating point issues) the same as:
//
// ```
// c = os.quadosc : _,!;
// s = os.quadosc : !,_;
// process =
// 10*c(F) + 20*c(2*F) + 30*c(F),
// 10*s(F) + 20*s(2*F) + 30*s(F);
// ```
//
// but much more efficient.
//
// #### Implementation Notes
//
// This is based on the trivial trigonometric identities:
//
// ```
// cos((n + 1) x) = 2 cos(x) cos(n x) - cos((n - 1) x)
// sin((n + 1) x) = 2 cos(x) sin(n x) - sin((n - 1) x)
// ```
//
// Note that the calculation of the cosine/sine parts do not depend
// on each other, so if you only need the sine part you can do:
//
// ```
// process = os.quadosc(F) : sidebands(vs) : !,_;
// ```
//
// and the compiler will discard the half of the calculations.
//-----------------------------------------------------------------------------
sidebands(vs, c0,s0)
= c0*vn(0),s0*vn(0), 1,c0, 0,s0
: seq(n, outputs(vs)-1, add(vn(n+1)))
: _,_, !,!, !,!
with {
// ba.take(n+1, vs)
vn(n) = vs : route(outputs(vs),1, n+1,1);
add(vn, co,so, cn_2,cn_1, sn_2,sn_1) =
co+cn*vn, so+sn*vn, cn_1,cn, sn_1,sn
with {
cn = 2*c0*cn_1 - cn_2;
sn = 2*c0*sn_1 - sn_2;
};
};
//-----------------------------`(os.)sidebands_list`--------------------------------------
// Creates the list of complex harmonics from quad oscillator.
//
// Similar to `sidebands` but doesn't sum the harmonics, so it is more
// generic but less convenient for immediate usage.
//
// #### Usage
//
// ```
// cos(x),sin(x) : sidebands_list(N) : si.bus(2*N)
// ```
//
// Where:
//
// * `N` : number of harmonics, compile time constant > 1
//
// #### Example test program
//
// ```
// cos(x),sin(x) : sidebands_list(3)
// ```
//
// outputs:
//
// ```
// cos(x),sin(x), cos(2*x),sin(2*x), cos(3*x),sin(3*x);
// ```
//
// The following:
//
// ```
// process = os.quadosc(F) : sidebands_list(3)
// ```
//
// is (modulo floating point issues) the same as:
//
// ```
// process = os.quadosc(F), os.quadosc(2*F), os.quadosc(3*F);
// ```
//
// but much more efficient.
//-----------------------------------------------------------------------------
sidebands_list(N, c0,s0)
= c0,s0, 1,c0, 0,s0
: seq(n, N-1, si.bus(2*(n+1)), add)
: si.bus(2*N), !,!, !,!
with {
add(cn_2,cn_1, sn_2,sn_1) =
cn,sn, cn_1,cn, sn_1,sn
with {
cn = 2*c0*cn_1 - cn_2;
sn = 2*c0*sn_1 - sn_2;
};
};
//------------------------------`(os.)dsf`--------------------------------
// An environment with sine/cosine oscsillators with exponentially decaying
// harmonics based on direct summation formula.
//
// #### Usage
//
// ```
// dsf.xxx(f0, df, a, [n]) : _
// ```
//
// Where:
//
// * `f0`: base frequency
// * `df`: step frequency
// * `a`: decaying factor != 1
// * `n`: total number of harmonics (`osccN/oscsN` only)
//
// #### Variants
//
// - infinite number of harmonics, implies aliasing
// ```
// oscc(f0,df,a) : _;
// oscs(f0,df,a) : _;
// ```
//
// - n harmonics, f0, f0 + df, f0 + 2\*df, ..., f0 + (n-1)\*df
// ```
// osccN(f0,df,a,n) : _;
// oscsN(f0,df,a,n) : _;
// ```
//
// - finite number of harmonics, from f0 to Nyquist
// ```
// osccNq(f0,df,a) : _;
// oscsNq(f0,df,a) : _;
// ```
//
// #### Example test program
//
// ```
// process = dsf.osccN(F0,DF,A,N),
// dsf.oscsN(F0,DF,A,N);
// ```
// if `N` is an integer constant, the same (modulo fp issues) as:
// ```
// c = os.quadosc : _,!;
// s = os.quadosc : !,_;
// process = sum(k,N, A^k * c(F0 + k*DF)),
// sum(k,N, A^k * s(F0 + k*DF));
// ```
// but much more efficient.
//
// #### Reference
//
// * <https://ccrma.stanford.edu/STANM/stanms/stanm5/stanm5.pdf>
//
declare dsf author "Oleg Nesterov";
dsf = environment {
qo = quadosc;
co = qo : _,!;
so = qo : !,_;
Nq(f0,df) = (ma.SR/2 - f0) / df : int;
// infinite number of harmonics, implies aliasing
oscc(f0,df,a) = (co(f0) - a*co(f0-df)) / (1 + a^2 - 2*a*co(df));
oscs(f0,df,a) = (so(f0) - a*so(f0-df)) / (1 + a^2 - 2*a*co(df));
// n harmonics, f0, f0 + df, f0 + 2*df, ..., f0 + (n-1)*df
osccN(f0,df,a,n) = oscc(f0,df,a) - a^n * oscc(f0 + n*df, df,a);
oscsN(f0,df,a,n) = oscs(f0,df,a) - a^n * oscs(f0 + n*df, df,a);
// finite number of harmonics, from f0 to Nyquist
osccNq(f0,df,a) = osccN(f0,df,a, Nq(f0,df));
oscsNq(f0,df,a) = oscsN(f0,df,a, Nq(f0,df));
};
//================ Waveguide-Resonator-Based Oscillators ================
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
//=======================================================================
//-----------------`(os.)oscwc`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`. Unit-amplitude
// cosine oscillator.
//
// #### Usage
//
// ```
// oscwc(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
oscwc(fr) = impulse : fi.wgr(fr,1) : _,!; // cosine (cheapest at 1 mpy/sample)
//-----------------`(os.)oscws`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`. Unit-amplitude
// sine oscillator.
//
// #### Usage
//
// ```
// oscws(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
oscws(fr) = impulse : fi.wgr(fr,1) : !,_; // sine (needs a 2nd scaling mpy)
//-----------------`(os.)oscq`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
// Unit-amplitude cosine and sine (quadrature) oscillator.
//
// #### Usage
//
// ```
// oscq(freq) : _,_
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
oscq(fr) = impulse : fi.wgr(fr,1); // phase quadrature outputs
//-----------------`(os.)oscw`--------------------
// Sinusoidal oscillator based on the waveguide resonator `wgr`.
// Unit-amplitude cosine oscillator (default).
//
// #### Usage
//
// ```
// oscw(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//
// #### Reference
//
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
oscw = oscwc;
// end jos section
//########################################################################################
/************************************************************************
FAUST library file, further contributions section
All contributions below should indicate both the contributor and terms
of license. If no such indication is found, "git blame" will say who
last edited each line, and that person can be emailed to inquire about
license disposition, if their license choice is not already indicated
elsewhere among the libraries. It is expected that all software will be
released under LGPL, STK-4.3, MIT, BSD, or a similar FOSS license.
************************************************************************/
//===================== Casio CZ Oscillators ==========================
// Oscillators that mimic some of the Casio CZ oscillators.
//
// There are two sets:
//
// * a set with an index parameter
//
// * a set with a res parameter
//
// The "index oscillators" outputs a sine wave at index=0 and gets brighter with a higher index.
// There are two versions of the "index oscillators":
//
// * with P appended to the name: is phase aligned with `fund:sin`
//
// * without P appended to the name: has the phase of the original CZ oscillators
//
// The "res oscillators" have a resonant frequency.
// "res" is the frequency of resonance as a factor of the fundamental pitch.
//
// For the `fund` waveform, use a low-frequency oscillator without anti-aliasing such as `os.lf_saw`.
//=====================================================================
//----------`(os.)CZsaw`----------
// Oscillator that mimics the Casio CZ saw oscillator.
// `CZsaw` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsaw(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = saw-wave
//------------------------------------------------------------
declare CZsaw author "Bart Brouns";
declare CZsaw licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZsaw(fund, index) = CZ.sawChooseP(fund, index, 0);
//----------`(os.)CZsawP`----------
// Oscillator that mimics the Casio CZ saw oscillator,
// with it's phase aligned to `fund:sin`.
// `CZsawP` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsawP(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = saw-wave
//------------------------------------------------------------
declare CZsawP author "Bart Brouns";
declare CZsawP licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZsawP(fund, index) = CZ.sawChooseP(fund, index, 1);
//----------`(os.)CZsquare`----------
// Oscillator that mimics the Casio CZ square oscillator
// `CZsquare` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsquare(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = square-wave
//------------------------------------------------------------
declare CZsquare author "Bart Brouns";
declare CZsquare licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZsquare(fund, index) = CZ.squareChooseP(fund, index, 0);
//----------`(os.)CZsquareP`----------
// Oscillator that mimics the Casio CZ square oscillator,
// with it's phase aligned to `fund:sin`.
// `CZsquareP` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsquareP(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 to 1. 0 = sine-wave, 1 = square-wave
//------------------------------------------------------------
declare CZsquareP author "Bart Brouns";
declare CZsquareP licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZsquareP(fund, index) = CZ.squareChooseP(fund, index, 1);
//----------`(os.)CZpulse`----------
// Oscillator that mimics the Casio CZ pulse oscillator.
// `CZpulse` is a standard Faust function.
//
// #### Usage
//
// ```
// CZpulse(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is closer to a pulse
//------------------------------------------------------------
declare CZpulse author "Bart Brouns";
declare CZpulse licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZpulse(fund, index) = CZ.pulseChooseP(fund, index, 0);
//----------`(os.)CZpulseP`----------
// Oscillator that mimics the Casio CZ pulse oscillator,
// with it's phase aligned to `fund:sin`.
// `CZpulseP` is a standard Faust function.
//
// #### Usage
//
// ```
// CZpulseP(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is closer to a pulse
//------------------------------------------------------------
declare CZpulseP author "Bart Brouns";
declare CZpulseP licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZpulseP(fund, index) = CZ.pulseChooseP(fund, index, 1);
//----------`(os.)CZsinePulse`----------
// Oscillator that mimics the Casio CZ sine/pulse oscillator.
// `CZsinePulse` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsinePulse(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is a sine minus a pulse
//------------------------------------------------------------
declare CZsinePulse author "Bart Brouns";
declare CZsinePulse licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZsinePulse(fund, index) = CZ.sinePulseChooseP(fund, index, 0);
//----------`(os.)CZsinePulseP`----------
// Oscillator that mimics the Casio CZ sine/pulse oscillator,
// with it's phase aligned to `fund:sin`.
// `CZsinePulseP` is a standard Faust function.
//
// #### Usage
//
// ```
// CZsinePulseP(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is a sine minus a pulse
//------------------------------------------------------------
declare CZsinePulseP author "Bart Brouns";
declare CZsinePulseP licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZsinePulseP(fund, index) = CZ.sinePulseChooseP(fund, index, 1);
//----------`(os.)CZhalfSine`----------
// Oscillator that mimics the Casio CZ half sine oscillator.
// `CZhalfSine` is a standard Faust function.
//
// #### Usage
//
// ```
// CZhalfSine(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is somewhere between a saw and a square
//------------------------------------------------------------
declare CZhalfSine author "Bart Brouns";
declare CZhalfSine licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZhalfSine(fund, index) = CZ.halfSineChooseP(fund, index, 0);
//----------`(os.)CZhalfSineP`----------
// Oscillator that mimics the Casio CZ half sine oscillator,
// with it's phase aligned to `fund:sin`.
// `CZhalfSineP` is a standard Faust function.
//
// #### Usage
//
// ```
// CZhalfSineP(fund,index) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `index`: the brightness of the oscillator, 0 gives a sine-wave, 1 is somewhere between a saw and a square
//------------------------------------------------------------
declare CZhalfSineP author "Bart Brouns";
declare CZhalfSineP licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZhalfSineP(fund, index) = CZ.halfSineChooseP(fund, index, 1);
//----------`(os.)CZresSaw`----------
// Oscillator that mimics the Casio CZ resonant sawtooth oscillator.
// `CZresSaw` is a standard Faust function.
//
// #### Usage
//
// ```
// CZresSaw(fund,res) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `res`: the frequency of resonance as a factor of the fundamental pitch.
//------------------------------------------------------------
declare CZresSaw author "Bart Brouns";
declare CZresSaw licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZresSaw(fund,res) = CZ.resSaw(fund,res);
//----------`(os.)CZresTriangle`----------
// Oscillator that mimics the Casio CZ resonant triangle oscillator.
// `CZresTriangle` is a standard Faust function.
//
// #### Usage
//
// ```
// CZresTriangle(fund,res) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `res`: the frequency of resonance as a factor of the fundamental pitch.
//------------------------------------------------------------
declare CZresTriangle author "Bart Brouns";
declare CZresTriangle licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZresTriangle(fund,res) = CZ.resTriangle(fund,res);
//----------`(os.)CZresTrap`----------
// Oscillator that mimics the Casio CZ resonant trapeze oscillator
// `CZresTrap` is a standard Faust function.
//
// #### Usage
//
// ```
// CZresTrap(fund,res) : _
// ```
//
// Where:
//
// * `fund`: a saw-tooth waveform between 0 and 1 that the oscillator slaves to
// * `res`: the frequency of resonance as a factor of the fundamental pitch.
//------------------------------------------------------------
declare CZresTrap author "Bart Brouns";
declare CZresTrap licence "STK-4.3";
// CZ oscillators by Mike Moser-Booth:
// <https://forum.pdpatchrepo.info/topic/5992/casio-cz-oscillators>
// Ported from pd to Faust by Bart Brouns
CZresTrap(fund, res) = CZ.resTrap(fund, res);
CZ = environment {
saw(fund, index) = sawChooseP(fund, index, 0);
sawP(fund, index) = sawChooseP(fund, index, 1);
sawChooseP(fund, index, p) =
(((FUND(fund,align,p)*((.5-INDEX)/INDEX)),(-1*FUND(fund,align,p)+1)*((.5-INDEX)/(1-INDEX))):min+FUND(fund,align,p))*2*ma.PI:cos
with {
INDEX = (.5-(index*.5)):max(0.01):min(0.5);
align = si.interpolate(index, 0.75, 0.5);
};
square(fund, index) = squareChooseP(fund, index, 0);
squareP(fund, index) = squareChooseP(fund, index, 1);
squareChooseP(fund, index, p) = (FUND(fund,align,p)>=0.5), (ma.decimal((FUND(fund,align,p)*2)+1)<:_-min(_,(-1*_+1)*((INDEX)/(1-INDEX)))) :+ *ma.PI:cos
with {
INDEX = (index:pow(0.25)):max(0):min(1);
align = si.interpolate(INDEX, -0.25, 0);
};
pulse(fund, index) = pulseChooseP(fund, index, 0);
pulseP(fund, index) = pulseChooseP(fund, index, 1);
pulseChooseP(fund, index, p) = ((FUND(fund,align,p)-min(FUND(fund,align,p),((-1*FUND(fund,align,p)+1)*(INDEX/(1-INDEX)))))*2*ma.PI):cos
with {
INDEX = index:min(0.99):max(0);
align = si.interpolate(index, -0.25, 0.0);
};
sinePulse(fund, index) = sinePulseChooseP(fund, index, 0);
sinePulseP(fund, index) = sinePulseChooseP(fund, index, 1);
sinePulseChooseP(fund, index, p) = (min(FUND(fund,align,p)*((0.5-INDEX)/INDEX),(-1*FUND(fund,align,p)+1)*((.5-INDEX)/(1-INDEX)))+FUND(fund,align,p))*4*ma.PI:cos
with {
INDEX = ((index*-0.49)+0.5);
align = si.interpolate(index, -0.125, -0.25);
};
halfSine(fund, index) = halfSineChooseP(fund, index, 0);
halfSineP(fund, index) = halfSineChooseP(fund, index, 1);
halfSineChooseP(fund, index, p) = (select2(FUND(fund,align,p)<.5, .5*(FUND(fund,align,p)-.5)/INDEX+.5, FUND(fund,align,p)):min(1))*2*ma.PI:cos
with {
INDEX = (.5-(index*0.5)):min(.5):max(.01);
align = si.interpolate(index:min(0.975), -0.25, -0.5);
};
FUND =
case {
(fund,align,0) => fund;
(fund,align,1) => (fund+align) : ma.frac; // align phase with fund
};
resSaw(fund,res) = (((-1*(1-fund))*((cos((ma.decimal((max(1,res)*fund)+1))*2*ma.PI)*-.5)+.5))*2)+1;
resTriangle(fund,res) = select2(fund<.5, 2-(fund*2), fund*2)*INDEX*2-1
with {
INDEX = ((fund*(res:max(1)))+1:ma.decimal)*2*ma.PI:cos*.5+.5;
};
resTrap(fund, res) = (((1-fund)*2):min(1)*sin(ma.decimal(fund*(res:max(1)))*2*ma.PI));
};
//===============================PolyBLEP-Based Oscillators=================================
//----------`(os.)polyblep`----------
// PolyBLEP residual function, used for smoothing steps in the audio signal.
//
// #### Usage
//
// ```
// polyblep(Q,phase) : _
// ```
//
// Where:
//
// * `Q`: smoothing factor between 0 and 0.5. Determines how far from the ends of the phase interval the quadratic function is used.
// * `phase`: normalised phase (between 0 and 1)
//------------------------------------------------------------
declare polyblep author "Jacek Wieczorek";
polyblep(Q, phase) = (0, L(phase / Q), R((phase - 1) / Q)) : select3(sel)
with {
sel = (phase < Q) + 2*(phase > 1 - Q);
L(x) = 2*x - x*x - 1; // Used near the left end of the interval
R(x) = 2*x + x*x + 1; // Used near the right end of the interval
};
//----------`(os.)polyblep_saw`----------
// Sawtooth oscillator with suppressed aliasing (using `polyblep`).
//
// #### Usage
//
// ```
// polyblep_saw(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
declare polyblep_saw author "Jacek Wieczorek";
polyblep_saw(freq) = naive - polyblep(Q , phase)
with {
phase = phasor(1, freq);
naive = 2 * phase - 1;
Q = freq / ma.SR;
};
//----------`(os.)polyblep_square`----------
// Square wave oscillator with suppressed aliasing (using `polyblep`).
//
// #### Usage
//
// ```
// polyblep_square(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
declare polyblep_square author "Jacek Wieczorek";
polyblep_square(freq) = naive - polyblep(Q, phase) + polyblep(Q, ma.modulo(phase + 0.5, 1))
with {
phase = phasor(1, freq);
naive = 2 * (phase * 2 : int) - 1;
Q = freq / ma.SR;
};
//----------`(os.)polyblep_triangle`----------
// Triangle wave oscillator with suppressed aliasing (using `polyblep`).
//
// #### Usage
//
// ```
// polyblep_triangle(freq) : _
// ```
//
// Where:
//
// * `freq`: frequency in Hz
//------------------------------------------------------------
declare polyblep_triangle author "Jacek Wieczorek";
polyblep_triangle(freq) = polyblep_square(freq) : fi.pole(0.999) : *(4 * freq / ma.SR);
// end further contributions section
//########################################################################################
|