1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668
|
//#################################### signals.lib ########################################
// A library of basic elements to handle signals in Faust. Its official prefix is `si`.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/signals.lib>
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file, GRAME section
Except where noted otherwise, Copyright (C) 2003-2017 by GRAME,
Centre National de Creation Musicale.
----------------------------------------------------------------------
GRAME LICENSE
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ba = library("basics.lib");
ro = library("routes.lib");
ma = library("maths.lib");
si = library("signals.lib");
declare name "Faust Signal Routing Library";
declare version "1.6.0";
//=============================Functions Reference========================================
//========================================================================================
//--------------------------------`(si.)bus`-------------------------------------
// Put N cables in parallel.
// `bus` is a standard Faust function.
//
// #### Usage
//
// ```
// bus(N)
// bus(4) : _,_,_,_
// ```
//
// Where:
//
// * `N`: is an integer known at compile time that indicates the number of parallel cables
//-----------------------------------------------------------------------------
bus(0) = 0:!;
bus(1) = _; // avoids a lot of "bus(1)" labels in block diagrams
bus(2) = _,_; // avoids a lot of "bus(2)" labels in block diagrams
bus(N) = par(i, N, _);
//--------------`(si.)block`--------------
// Block - terminate N signals.
// `block` is a standard Faust function.
//
// #### Usage
//
// ```
// si.bus(N) : block(N)
// ```
//
// Where:
//
// * `N`: the number of signals to be blocked known at compile time
//--------------------------------------
block(N) = par(i, N, !);
//-----------------------------`(si.)interpolate`-------------------------------
// Linear interpolation between two signals.
//
// #### Usage
//
// ```
// _,_ : interpolate(i) : _
// ```
//
// Where:
//
// * `i`: interpolation control between 0 and 1 (0: first input; 1: second input)
//-----------------------------------------------------------------------------
interpolate(i,x,y) = x + i*(y-x);
//---------------`(si.)repeat`----------------------------------------------
// Repeat an effect N time(s) and take the parallel sum of all
// intermediate buses.
//
// #### References
// * <https://github.com/orlarey/presentation-compilateur-faust/blob/master/slides.pdf>
//
// #### Usage
//
// ```
// si.bus(inputs(FX)) : repeat(N, FX) : si.bus(outputs(FX))
// ```
//
// Where:
//
// * `N`: Number of repetitions, minimum of 1, a constant numerical expression
// * `FX`: an arbitrary effect (N inputs and N outputs) that will be repeated
//
// Example 1:
// ```
// process = repeat(2, dm.zita_light) : _*.5,_*.5;
// ```
//
// Example 2:
// ```
// N = 4;
// C = 2;
// fx(i) = i+1, par(j, C, @(i*5000));
// process = 0, si.bus(C) : repeat(N, fx) : !, par(i, C, _*.2/N);
// ```
//---------------------------------------------------------------------------
declare repeat author "Yann Orlarey and Stéphane Letz, revised by David Braun";
repeat(1, FX) = FX;
repeat(n, FX) = FX <: si.bus(N), repeat(n-1, FX) :> si.bus(N)
with {
N = outputs(FX);
};
//------------------------`(si.)smoo`---------------------------------------
// Smoothing function based on `smooth` ideal to smooth UI signals
// (sliders, etc.) down. Approximately, this is a 7 Hz one-pole
// low-pass considering the coefficient calculation:
// exp(-2pi*CF/SR).
//
// `smoo` is a standard Faust function.
//
// #### Usage
//
// ```
// hslider(...) : smoo;
// ```
//---------------------------------------------------------------------
smoo = si.smooth(1 - 44.1/ma.SR);
//-----------------------`(si.)polySmooth`--------------------------------
// A smoothing function based on `smooth` that doesn't smooth when a
// trigger signal is given. This is very useful when making
// polyphonic synthesizer to make sure that the value of the parameter
// is the right one when the note is started.
//
// #### Usage
//
// ```
// hslider(...) : polySmooth(g,s,d) : _
// ```
//
// Where:
//
// * `g`: the gate/trigger signal used when making polyphonic synths
// * `s`: the smoothness (see `smooth`)
// * `d`: the number of samples to wait before the signal start being
// smoothed after `g` switched to 1
//-------------------------------------------------------------------
polySmooth(g,s,d) = si.smooth(s*((g==(g@d)) | (g == 0)));
//-----------------------`(si.)smoothAndH`--------------------------------
// A smoothing function based on `smooth` that holds its output
// signal when a trigger is sent to it. This feature is convenient
// when implementing polyphonic instruments to prevent some
// smoothed parameter to change when a note-off event is sent.
//
// #### Usage
//
// ```
// hslider(...) : smoothAndH(g,s) : _
// ```
//
// Where:
//
// * `g`: the hold signal (0 for hold, 1 for bypass)
// * `s`: the smoothness (see `smooth`)
//-------------------------------------------------------------------
smoothAndH(t,s) = si.smooth(s*t) : ba.sAndH(t);
//-----------------------------`(si.)bsmooth`------------------------------
// Block smooth linear interpolation during a block of samples (given by the `ma.BS` value).
//
// #### Usage
//
// ```
// hslider(...) : bsmooth : _
// ```
//-----------------------------------------------------------------------
bsmooth(c) = +(i) ~ _
with {
i = (c-c@n)/n;
n = min(4096, max(1, ma.BS));
};
//-------------------------------`(si.)dot`--------------------------------------
// Dot product for two vectors of size N.
//
// #### Usage
//
// ```
// si.bus(N), si.bus(N) : dot(N) : _
// ```
//
// Where:
//
// * `N`: size of the vectors (int, must be known at compile time)
//-----------------------------------------------------------------------------
dot(N) = ro.interleave(N,2) : par(i,N,*) :> _;
// end GRAME section
//########################################################################################
/************************************************************************
FAUST library file, jos section
Except where noted otherwise, The Faust functions below in this
section are Copyright (C) 2003-2017 by Julius O. Smith III <jos@ccrma.stanford.edu>
([jos](http://ccrma.stanford.edu/~jos/)), and released under the
(MIT-style) [STK-4.3](#stk-4.3-license) license.
All MarkDown comments in this section are Copyright 2016-2017 by Romain
Michon and Julius O. Smith III, and are released under the
[CCA4I](https://creativecommons.org/licenses/by/4.0/) license (TODO: if/when Romain agrees!)
************************************************************************/
//-------------------`(si.)smooth`-----------------------------------
// Exponential smoothing by a unity-dc-gain one-pole lowpass.
// `smooth` is a standard Faust function.
//
// #### Usage:
//
// ```
// _ : si.smooth(ba.tau2pole(tau)) : _
// ```
//
// Where:
//
// * `tau`: desired smoothing time constant in seconds, or
//
// ```
// hslider(...) : smooth(s) : _
// ```
//
// Where:
//
// * `s`: smoothness between 0 and 1. s=0 for no smoothing, s=0.999 is "very smooth",
// s>1 is unstable, and s=1 yields the zero signal for all inputs.
// The exponential time-constant is approximately 1/(1-s) samples, when s is close to
// (but less than) 1.
//
// #### References:
//
// * <https://ccrma.stanford.edu/~jos/mdft/Convolution_Example_2_ADSR.html>
// * <https://ccrma.stanford.edu/~jos/aspf/Appendix_B_Inspecting_Assembly.html>
//-------------------------------------------------------------
// See [grame-cncm/faustlibraries]: Minor improvement to si.smoo. (Discussion #106)
smooth_imp = case {
// y[n] = (1 - s) * x[n] + s * y[n - 1]
(0,s) => \(x).(fb ~ _ with { fb(y) = (1.0 - s) * x + s * y; });
// y[n] = s * (y[n - 1] - x[n]) + x[n]
(1,s) => \(x).(fb ~ _ with { fb(y) = s * (y - x) + x; });
// y[n] = y[n - 1] + (1 - s) * (x[n] - y[n - 1])
(2,s) => \(x).(fb ~ _ with { fb(y) = y + (1.0 - s) * (x - y); });
};
// The best compromise on modern CPUs where two independent multiplications can be done in parallel.
// Other versions could possibly be faster on embedded devices.
smooth = smooth_imp(0);
//--------------------------------`(si.)smoothq`-------------------------------------
// Smoothing with continuously variable curves from Exponential to Linear, with a constant time.
//
// #### Usage
//
// ```
// _ : smoothq(time, q) : _;
// ```
//
// Where:
//
// * `time`: seconds to reach target
// * `q`: curve shape (between 0..1, 0 is Exponential, 1 is Linear)
//-----------------------------------------------------------------------------
declare smoothq author "Andrew John March";
declare smoothq licence "STK-4.3";
smoothq(time, q, tar) = envelope
with {
ratio = pow(q, 5) * 32 : max(0.001);
coef = (ratio / (1 + ratio))^(1 / (ma.SR * time));
fb(cBase, cTar, cSrc, cDistance, cDir, cY, cOut) = base, tar, src, distance, dir, y, out
with {
trig = cTar != tar;
src = select2(trig, cSrc, cOut);
dir = select2(trig, cDir, tar > src);
base = select2(trig, cBase, select2(dir,
(0.0 - ratio) * (1.0 - coef),
(1.0 + ratio) * (1.0 - coef)
));
distance = select2(trig, cDistance, abs(tar - src));
y = select2(dir,
select2(trig,
max( 0, base + cY * coef),
1
),
select2(trig,
min( 1, base + cY * coef),
0
)
);
out = select2(dir,
tar + y * distance,
src + y * distance
);
};
envelope = fb ~ (_,_,_,_,_,_,_) : !,!,!,!,!,!,_;
};
//--------------------------------`(si.)cbus`-------------------------------------
// N parallel cables for complex signals.
// `cbus` is a standard Faust function.
//
// #### Usage
//
// ```
// cbus(N)
// cbus(4) : (r0,i0), (r1,i1), (r2,i2), (r3,i3)
// ```
//
// Where:
//
// * `N`: is an integer known at compile time that indicates the number of parallel cables.
// * each complex number is represented by two real signals as (real,imag)
//-----------------------------------------------------------------------------
cbus(1) = (_,_);
cbus(N) = par(i, N, (_,_));
//--------------------------------`(si.)cmul`-------------------------------------
// Multiply two complex signals pointwise.
// `cmul` is a standard Faust function.
//
// #### Usage
//
// ```
// (r1,i1) : cmul(r2,i2) : (_,_)
// ```
//
// Where:
//
// * Each complex number is represented by two real signals as (real,imag), so
// - `(r1,i1)` = real and imaginary parts of signal 1
// - `(r2,i2)` = real and imaginary parts of signal 2
//-----------------------------------------------------------------------------
cmul(r1,i1,r2,i2) = (r1*r2 - i1*i2), (r1*i2 + r2*i1);
//--------------------------------`(si.)cconj`-------------------------------------
// Complex conjugation of a (complex) signal.
// `cconj` is a standard Faust function.
//
// #### Usage
//
// ```
// (r1,i1) : cconj : (_,_)
// ```
//
// Where:
//
// * Each complex number is represented by two real signals as (real,imag), so
// - `(r1,i1)` = real and imaginary parts of the input signal
// - `(r1,-i1)` = real and imaginary parts of the output signal
//-----------------------------------------------------------------------------
cconj = _, *(-1);
// end jos section
/************************************************************************
FAUST library file, further contributions section
All contributions below should indicate both the contributor and terms
of license. If no such indication is found, "git blame" will say who
last edited each line, and that person can be emailed to inquire about
license disposition, if their license choice is not already indicated
elsewhere among the libraries. It is expected that all software will be
released under LGPL, STK-4.3, MIT, BSD, or a similar FOSS license.
************************************************************************/
//-------------`(si.)onePoleSwitching`---------------
// One pole filter with independent attack and release times.
//
// #### Usage
//
// ```
// _ : onePoleSwitching(att,rel) : _
// ```
//
// Where:
//
// * `att`: the attack tau time constant in second
// * `rel`: the release tau time constant in second
//
//----------------------------------------------------
declare onePoleSwitching author "Jonatan Liljedahl, revised by Dario Sanfilippo";
declare onePoleSwitching licence "STK-4.3";
onePoleSwitching(att, rel, x) = loop ~ _
with {
loop(yState) = (1.0 - coeff) * x + coeff * yState
with {
coeff = ba.if(x > yState, ba.tau2pole(att), ba.tau2pole(rel));
};
};
// Kept for backward compatibility
lag_ud = onePoleSwitching;
// end further further contributions section
//-------------`(si.)rev`---------------
// Reverse the input signal by blocks of n>0 samples. `rev(1)` is the indentity
// function. `rev(n)` has a latency of `n-1` samples.
//
// #### Usage
//
// ```
// _ : rev(n) : _
// ```
//
// Where:
//
// * `n`: the block size in samples
//----------------------------------------------------
declare rev author "Yann Orlarey";
rev(n) = @(phase(n)*2)
with {
phase(n) = 1 : (+ : %(n)) ~ _ : max(0) : min(n-1);
};
//--------------------`(si.)vecOp`----------------------------------------------
//
// This function is a generalisation of Faust's iterators such as `prod` and
// `sum`, and it allows to perform operations on an arbitrary number of
// vectors, provided that they all have the same length. Unlike Faust's
// iterators `prod` and `sum` where the vector size is equal to one and the
// vector space dimension must be specified by the user, this function will
// infer the vector space dimension and vector size based on the vectors list
// that we provide.
//
// The outputs of the function are equal to the vector size, whereas the
// number of inputs is dependent on whether the elements of the vectors
// provided expect an incoming signal themselves or not. We will see a
// clarifying example later; in general, the number of total inputs will
// be the sum of the inputs in each input vector.
//
// Note that we must provide a list of at least two vectors, each with a size
// that is greater or equal to one.
//
// #### Usage
//
// ```
// si.bus(inputs(vectorsList)) : vecOp((vectorsList), op) : si.bus(outputs(ba.take(1, vectorsList)));
// ```
//
// #### Where
//
// * `vectorsList`: is a list of vectors
// * `op`: is a two-input, one-output operator
//
// For example, consider the following vectors lists:
//
// v0 = (0 , 1 , 2 , 3);
// v1 = (4 , 5 , 6 , 7);
// v2 = (8 , 9 , 10 , 11);
// v3 = (12 , 13 , 14 , 15);
// v4 = (+(16) , _ , 18 , *(19));
// vv = (v0 , v1 , v2 , v3);
//
// Although Faust has limitations for list processing, these vectors can be
// combined or processed individually.
//
// If we do:
//
// process = vecOp(v0, +);
//
// the function will deduce a vector space of dimension equal to four and
// a vector length equal to one. Note that this is equivalent to writing:
//
// process = v0 : sum(i, 4, _);
//
// Similarly, we can write:
//
// process = vecOp((v0 , v1), *) :> _;
//
// and we have a dimension-two space and length-four vectors. This is the dot
// product between vectors v0 and v1, which is equivalent to writing:
//
// process = v0 , v1 : dot(4);
//
// The examples above have no inputs, as none of the elements of the vectors
// expect inputs. On the other hand, we can write:
//
// process = vecOp((v4 , v4), +);
//
// and the function will have six inputs and four outputs, as each vector
// has three of the four elements expecting an input, times two, as the two
// input vectors are identical.
//
// Finally, we can write:
//
// process = vecOp(vv, &);
//
// to perform the bitwise AND on all the elements at the same position in
// each vector, having dimension equal to the vector length equal to four.
//
// Or even:
//
// process = vecOp((vv , vv), &);
//
// which gives us a dimension equal to two, and a vector size equal to sixteen.
//
// For a more practical use-case, this is how we can implement a time-invariant
// feedback delay network with Hadamard matrix:
//
// N = 4;
// normalisation = 1.0 / sqrt(N);
// coeffVec = par(i, N, .99 * normalisation);
// delVec = par(i, N, (i + 1) * 3);
// process = vecOp((si.bus(N) , si.bus(N)), +) ~
// vecOp((vecOp((ro.hadamard(N) , coeffVec), *) , delVec), @);
//
//------------------------------------------------------------------------------
declare vecOp author "Dario Sanfilippo";
declare vecOp copyright "Copyright (C) 2022 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare vecOp license "MIT License";
vecOp(vectorsList, op) =
vectorsList : seq(i, vecDim - 1, vecOp2D , vecBus(vecDim - 2 - i))
with {
vecBus(0) = par(i, vecLen, 0 : !);
vecBus(dim) = par(i, dim, si.bus(vecLen));
vecOp2D = ro.interleave(vecLen, 2) : par(i, vecLen, op);
vecDim = outputs(vectorsList) / vecLen;
vecLen = outputs(ba.take(1, vectorsList));
};
/*
Balanced par, sum, and prod, faster versions of built-in par, sum, prod
when the repeated expression doesn't depend on the variable.
*/
//-------------`(si.)bpar`---------------
// Balanced `par` where the repeated expression doesn't depend on a variable.
// The built-in `par` is implemented as an unbalanced tree, and also has
// to substitute the variable into the repeated expression, which is expensive
// even when the variable doesn't appear. This version is implemented as a
// balanced tree (which allows node reuse during tree traversal) and also
// doesn't search for the variable. This can be much faster than `par` to compile.
//
// #### Usage
//
// ```
// si.bus(N * inputs(f)) : bpar(N, f) : si.bus(N * outputs(f))
// ```
//
// Where:
//
// * `N`: number of repetitions, minimum 1, a constant numerical expression
// * `f`: an arbitrary expression
//
// Example:
// ```
// // square each of 4000 inputs
// process = si.bpar(4000, (_ <: _, _ : *));
// ```
//
//------------------------------------------
declare bpar author "Haggai Nuchi";
declare bpar copyright "Copyright (C) 2024 Haggai Nuchi <haggai@haggainuchi.com>";
declare bpar license "MIT License";
bpar(1, f) = f;
bpar(N, f) = bpar(left, f), bpar(right, f) with {
left = ma.np2(N) >> 1; // biggest power of 2 less than N
right = N - left;
};
//-------------`(si.)bsum`---------------
// Balanced `sum`, see `si.bpar`.
//
// #### Usage
//
// ```
// si.bus(N * inputs(f)) : bsum(N, f) : _
// ```
//
// Where:
//
// * `N`: number of repetitions, minimum 1, a constant numerical expression
// * `f`: an arbitrary expression with 1 output.
//
// Example:
// ```
// // square each of 1000 inputs and add the results
// process = si.bsum(1000, (_ <: _, _ : *));
// ```
//----------------------------------------------------
declare bsum author "Haggai Nuchi";
declare bsum copyright "Copyright (C) 2024 Haggai Nuchi <haggai@haggainuchi.com>";
declare bsum license "MIT License";
bsum(1, f) = f;
bsum(N, f) = bsum(left, f) + bsum(right, f) with {
left = ma.np2(N) >> 1; // biggest power of 2 less than N
right = N - left;
};
//-------------`(si.)bprod`---------------
// Balanced `prod`, see `si.bpar`.
//
// #### Usage
//
// ```
// si.bus(N * inputs(f)) : bprod(N, f) : _
// ```
//
// Where:
//
// * `N`: number of repetitions, minimum 1, a constant numerical expression
// * `f`: an arbitrary expression with 1 output.
//
// Example:
// ```
// // Add 8000 consecutive inputs (in pairs) and multiply the results
// process = si.bprod(4000, +);
// ```
//----------------------------------------------------
declare bprod author "Haggai Nuchi";
declare bprod copyright "Copyright (C) 2024 Haggai Nuchi <haggai@haggainuchi.com>";
declare bprod license "MIT License";
bprod(1, f) = f;
bprod(N, f) = bprod(left, f) * bprod(right, f) with {
left = ma.np2(N) >> 1; // biggest power of 2 less than N
right = N - left;
};
|