1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276
|
//#################################### wdmodels.lib ##############################################################################
// A library of basic adaptors and methods to help construct Wave Digital Filter models in Faust. Its official prefix is `wd`.
// ## Library Readme
// This library is intended for use for creating Wave Digital (WD) based models of audio circuitry for real-time audio processing within the Faust programming language. The goal is to provide a framework to create real-time virtual-analog audio effects and synthesizers using WD models without the use of C++. Furthermore, we seek to provide access to the technique of WD modeling to those without extensive knowledge of advanced digital signal processing techniques. Finally, we hope to provide a library which can integrate with all aspects of Faust, thus creating a platform for virtual circuit bending.
// The library itself is written in Faust to maintain portability.
//
// This library is heavily based on Kurt Werner's Dissertation, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters." I have tried to maintain consistent notation between the adaptors appearing within thesis and my adaptor code. The majority of the adaptors found in chapter 1 and chapter 3 are currently supported.
//
// For inquires about use of this library in a commercial product, please contact dirk [dot] roosenburg [dot] 30 [at] gmail [dot] com.
// This documentation is taken directly from the [readme](https://github.com/droosenb/faust-wdf-library). Please refer to it for a more updated version.
//
// Many of the more in depth comments within the library include jargon. I plan to create videos detailing the theory of WD models.
// For now I recommend Kurt Werner's PhD, [Virtual analog modeling of Audio circuitry using Wave Digital Filters](https://searchworks.stanford.edu/view/11891203).
// I have tried to maintain consistent syntax and notation to the thesis.
// This library currently includes the majority of the adaptors covered in chapter 1 and some from chapter 3.
//
//
// ## Using this Library
//
// Use of this library expects some level of familiarity with WDF techniques, especially simplification and decomposition of electronic circuits into WDF connection trees. I plan to create video to cover both these techniques and use of the library.
//
// ### Quick Start
//
// To get a quick overview of the library, start with the `secondOrderFilters.dsp` code found in [examples](https://github.com/droosenb/faust-wdf-library/tree/main/examples).
// Note that the `wdmodels.lib` library is now embedded in the [online Faust IDE](https://faustide.grame.fr/).
//
// ### A Simple RC Filter Model
//
// Creating a model using this library consists fo three steps. First, declare a set of components.
// Second, model the relationship between them using a tree. Finally, build the tree using the libraries build functions.
//
// First, a set of components is declared using adaptors from the library.
// This list of components is created based on analysis of the circuit using WDF techniques,
// though generally each circuit element (resistor, capacitor, diode, etc.) can be expected to appear
// within the component set. For example, first order RC lowpass filter would require an unadapted voltage source,
// a 47k resistor, and a 10nF capacitor which outputs the voltage across itself. These can be declared with:
//
// ```
// vs1(i) = wd.u_voltage(i, no.noise);
// r1(i) = wd.resistor(i, 47*10^3);
// c1(i) = wd.capacitor_Vout(i, 10*10^-9);
// ```
//
// Note that the first argument, i, is left un-parametrized. Components must be declared in this form, as the build algorithm expects to receive adaptors which have exactly one parameter.
//
// Also note that we have chosen to declare a white noise function as the input to our voltage source.
// We could potentially declare this as a direct input to our model, but to do so is more complicated
// process which cannot be covered within this tutorial. For information on how to do this see
// [Declaring Model Parameters as Inputs](#declaring-model-parameters-as-inputs) or see various implementations
// in [examples](https://github.com/droosenb/faust-wdf-library/tree/main/examples).
//
// Second, the declared components and interconnection/structural adaptors (i.e. series, parallel, etc) are arranged
// into the connection tree which is produced from performing WD analysis on the modeled circuit.
// For example, to produce our first order RC lowpass circuit model, the following tree is declared:
//
// `tree_lowpass = vs1 : wd.series : (r1, c1);`
//
// For more information on how to represent trees in Faust, see [Trees in Faust](#trees-in-faust).
//
// Finally, the tree is built using the the `buildtree` function. To build and compute our first order
// RC lowpass circuit model, we use:
//
// `process = wd.buildtree(tree_lowpass);`
//
// More information about build functions, see [Model Building Functions](#model-building-functions).
//
// ### Building a Model
//
// After creating a connection tree which consists of WD adaptors, the connection tree must be passed
// to a build function in order to build the model.
//
// ##### Automatic model building
//
// `buildtree(connection_tree)`
//
// The simplest build function for use with basic models. This automatically implements `buildup`, `builddown`,
// and `buildout` to create a working model. However, it gives minimum control to the user and cannot
// currently be used on trees which have parameters declared as inputs.
//
// ##### Manual model building
//
// Wave Digital Filters are an explicit state-space model, meaning they use a previous system state
// in order to calculate the current output. This is achieved in Faust by using a single global feedback operator.
// The models feed-forward terms are generated using `builddown` and the models feedback terms are generated
// using `buildup`. Thus, the most common model implementation (the method used by `buildtree`) is:
//
// `builddown(connection_tree)~buildup(connection_tree) : buildout(connection_tree)`
//
// Since the `~` operator in Faust will leave feedback terms hanging as outputs, `buildout` is a function provided for convenience.
// It automatically truncates the hanging outputs by identifying leaf components which have an intended output
// and generating an output matrix.
//
// Building the model manually allows for greater user control and is often very helpful in testing.
// Also provided for testing are the `getres` and `parres` functions, which can be used to determine
// the upward-facing port resistance of an element.
//
// ### Declaring Model Parameters as Inputs
//
// When possible, parameters of components should be declared explicitly, meaning they are dependent on a function with no inputs.
// This might be something as simple as integer(declaring a static component), a function dependent on a UI input (declaring a component with variable value),
// or even a time-dependent function like an oscillator (declaring an audio input or circuit bending).
//
// However, it is often necessary to declare parameters as input. To achieve this there are two possible methods.
// The first and recommended option is to create a separate model function and declare parameters which will later
// be implemented as inputs. This allows inputs to be explicitly declared as component parameters.
// For example, one might use:
//
// ```
// model(in1) = buildtree(tree)
// with {
// ...
// vin(i) = wd.u_voltage(i, in1);
// ...
// tree = vin : ...;
// };
// ```
//
// In order to simulate an audio input to the circuit.
//
// Note that the tree and components must be declared inside a `with {...}` statement, or the model's parameters will not be accessible.
//
// ##### The Empty Signal Operator
//
// The Empty signal operator, `_` should NEVER be used to declare a parameter as in input in a wave-digital model.
//
// Using it will result on breaking the internal routing of the model and thus breaks the model.
// Instead, use explicit declaration as shown directly above.
//
// ### Trees in Faust
//
// Since WD models use connection trees to represent relationships of elements, a comprehensive way to represent trees is critical.
// As there is no current convention for creating trees in Faust, I've developed a method using the existing series and parallel/list
// methods in Faust.
//
// The series operator ` : ` is used to separate parent and child elements. For example the tree:
//
// ```
// A
// |
// B
// ```
//
// is represented by `A : B` in Faust.
//
// To denote a parent element with multiple child elements, simply use a list `(a1, a2, ... an)` of children connected to a single parent. `
// For example the tree:
//
// ```
// A
// / \
// B C
//
// ```
// is represented by:
//
// `A : (B, C)`
//
// Finally, for a tree with many levels, simply break the tree into subtrees following the above rules and connect
// the subtree as if it was an individual node. For example the tree:
//
// ```
// A
// / \
// B C
// / / \
// X Y Z
// ```
//
// can be represented by:
//
// ```
// B_sub = B : X; //B subtree
// C_sub = C : (Y, Z); //C subtree
// tree = A : (B_sub, C_sub); //full tree
// ```
//
// or more simply, using parentheses:
//
// `A : ((B : X), (C : (Y, Z)))`
// ### How Adaptors are Structured
// In wave digital filters, adaptors can be described by the form `b = Sa` where `b` is a vector of output waves `b = (b0, b1, b2, ... bn)`, `a` is a vector of input waves`a = (a0, a1, a2, ... an)`, and `S` is an n x n scattering matrix.
// `S` is dependent on `R`, a list of port resistances `(R0, R1, R2, ... Rn)`.
//
// The output wave vector `b` can be divided into downward-going and upward-going waves
// (downward-going waves travel down the connection tree, upward-going waves travel up).
// For adapted adaptors, with the zeroth port being the upward-facing port, the downward-going wave vector is `(b1, b2, ... bn)` and the upward-going wave vector is `(b0)`.
// For unadapted adaptors, there are no upward-going waves, so the downward-going wave vector is simply `b = (b0, b1, b2, ... bn)`.
//
// In order for adaptors to be interpretable by the compiler, they must be structured in a specific way.
// Each adaptor is divided into three cases by their first parameter. This parameter, while accessible by the user, should only be set by the compiler/builder.
//
// All other parameters are value declarations (for components), inputs (for voltage or current ins), or parameter controls (for potentiometers/variable capacitors/variable inductors).
//
// ##### First case - downward going waves
//
// `(0, params) => downward-going(R1, ... Rn, a0, a1, ... an)`
// outputs: `(b1, b2, ... bn)`
// this function takes any number of port resistances, the downward going wave, and any number of upward going waves as inputs.
// These values/waves are used to calculate the downward going waves coming from this adaptor.
//
// ##### Second case
//
// `(1, params) => upward-going(R1, ... Rn, a1, ... an)`
// outputs : `(b0)`
// this function takes any number of port resistances and any number of upward going waves as inputs.
// These values/waves are used to calculate the upward going wave coming from this adaptor.
//
// ##### Third case
//
// `(2, params) => port-resistance(R1, ... Rn)`
// outputs: `(R0)`
// this function takes any number of port resistances as inputs.
// These values are used to calculate the upward going port resistance of the element.
//
// ##### Unadapted Adaptors
//
// Unadapted adaptor's names will always begin `u_`
// An unadapted adaptor MUST be used as the root of the WD connection tree.
// Unadapted adaptors can ONLY be used as a root of the WD connection tree.
// While unadapted adaptors contain all three cases, the second and third are purely structural.
// Only the first case should contain computational information.
//
// ### How the Build Functions Work
//
// Expect this section to be added soon! It's currently in progress.
//
// ### Acknowledgements
//
// Many thanks to Kurt Werner for helping me to understand wave digital filter models. Without his publications and consultations, the library would not exist.
// Thanks also to my advisors, Rob Owen and Eli Stine whose input was critical to the development of the library.
// Finally, thanks to Romain Michon, Stephane Letz, and the Faust Slack for contributing to testing, development, and inspiration when creating the library.
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/wdmodels.lib>
//################################################################################################################################
ba = library("basics.lib");
ro = library("routes.lib");
ma = library("maths.lib");
si = library("signals.lib");
declare name "Faust Wave Digital Model Library";
declare version "1.2.1";
//=============================Algebraic One Port Adaptors=================================
//=========================================================================================
//----------------------`(wd.)resistor`--------------------------
// Adapted Resistor.
//
// A basic node implementing a resistor for use within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
//
// #### Usage
//
// ```
// r1(i) = resistor(i, R);
// buildtree( A : r1 );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `R` : Resistance/Impedance of the resistor being modeled in Ohms.
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.1
//----------------------------------------------------------
declare resistor author "Dirk Roosenburg";
declare resistor copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare resistor license "MIT-style STK-4.3 license";
resistor =
case{
(0, R) => !, 0;
(1, R) => _;
(2, R) => R0
with{
R0 = R;
};
};
//----------------------`(wd.)resistor_Vout`--------------------------
// Adapted Resistor + voltage Out.
//
// A basic adaptor implementing a resistor for use within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// The resistor will also pass the voltage across itself as an output of the model.
//
// #### Usage
//
// ```
// rout(i) = resistor_Vout(i, R);
// buildtree( A : rout ) : _
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `R` : Resistance/Impedance of the resistor being modeled in Ohms.
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.1
//----------------------------------------------------------
declare resistor_Vout author "Dirk Roosenburg";
declare resistor_Vout copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare resistor_Vout license "MIT-style STK-4.3 license";
resistor_Vout =
case{
(0, R) => 0, _*.5;
(1, R) => _, !;
(2, R) => R0
with{
R0 = R;
};
}with{
rho = 1;
};
//----------------------`(wd.)resistor_Iout`--------------------------
// Resistor + current Out.
//
// A basic adaptor implementing a resistor for use within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// The resistor will also pass the current through itself as an output of the model.
//
// #### Usage
//
// ```
// rout(i) = resistor_Iout(i, R);
// buildtree( A : rout ) : _
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `R` : Resistance/Impedance of the resistor being modeled in Ohms.
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.1
//----------------------------------------------------------
declare resistor_Iout author "Dirk Roosenburg";
declare resistor_Iout copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare resistor_Iout license "MIT-style STK-4.3 license";
resistor_Iout =
case{
(0, R) => 0, _*.5/R;
(1, R) => _, !;
(2, R) => R0
with{
R0 = R;
};
};
//----------------------`(wd.)u_voltage`--------------------------
// Unadapted Ideal Voltage Source.
//
// An adaptor implementing an ideal voltage source within Wave Digital Filter connection trees.
//
// It should be used as the root/top element of the connection tree.
// Can be used for either DC (constant) or AC (signal) voltage sources.
//
// #### Usage
//
// ```
// v1(i) = u_Voltage(i, ein);
// buildtree( v1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `ein` : Voltage/Potential across ideal voltage source in Volts
//
// Note: only usable as the root of a tree.
// The adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.2
//----------------------------------------------------------
declare u_voltage author "Dirk Roosenburg";
declare u_voltage copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_voltage license "MIT-style STK-4.3 license";
u_voltage =
case{
(0 , ein) => b0
with{
b0(R0, a0) = 2*R0^(rho-1)*ein -a0;
};
(1, ein) => !, !;
(2, ein) => 0;
}with{
rho = 1;
};
//----------------------`(wd.)u_current`--------------------------
// Unadapted Ideal Current Source.
//
// An unadapted adaptor implementing an ideal current source within Wave Digital Filter connection trees.
//
// It should be used as the root/top element of the connection tree.
// Can be used for either DC (constant) or AC (signal) current sources.
//
// #### Usage
//
// ```
// i1(i) = u_current(i, jin);
// buildtree( i1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `jin` : Current through the ideal current source in Amps
//
// Note: only usable as the root of a tree.
// The adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.3
//----------------------------------------------------------
declare u_current author "Dirk Roosenburg";
declare u_current copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_current license "MIT-style STK-4.3 license";
u_current =
case{
(0 , jin) => b0
with{
b0(R0, a0) = 2*R0^(rho)*jin + a0;
};
(1, jin) => !, !;
(2, jin) => 0;
}with{
rho = 1;
};
//----------------------`(wd.)resVoltage`--------------------------
// Adapted Resistive Voltage Source.
//
// An adaptor implementing a resistive voltage source within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// It is comprised of an ideal voltage source in series with a resistor.
// Can be used for either DC (constant) or AC (signal) voltage sources.
//
// #### Usage
//
// ```
// v1(i) = resVoltage(i, R, ein);
// buildtree( A : v1 );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `R` : Resistance/Impedance of the series resistor in Ohms
// * `ein` : Voltage/Potential of the ideal voltage source in Volts
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.4
//----------------------------------------------------------
declare resVoltage author "Dirk Roosenburg";
declare resVoltage copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare resVoltage license "MIT-style STK-4.3 license";
resVoltage =
case{
(0, R, ein) => !, R^(1-rho)*ein;
(1, R, ein) => _;
(2, R, ein) => R0
with {
R0 = R;
};
}with{
rho = 1;
};
//----------------------`(wd.)resVoltage_Vout`--------------------------
// Adapted Resistive Voltage Source + voltage output.
//
// An adaptor implementing an adapted resistive voltage source within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// It is comprised of an ideal voltage source in series with a resistor.
// Can be used for either DC (constant) or AC (signal) voltage sources.
// The resistive voltage source will also pass the voltage across it as an output of the model.
//
// #### Usage
//
// ```
// vout(i) = resVoltage_Vout(i, R, ein);
// buildtree( A : vout ) : _
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `R` : Resistance/Impedance of the series resistor in Ohms
// * `ein` : Voltage/Potential across ideal voltage source in Volts
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.4
//----------------------------------------------------------
declare resVoltage_Vout author "Dirk Roosenburg";
declare resVoltage_Vout copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare resVoltage_Vout license "MIT-style STK-4.3 license";
resVoltage_Vout =
case{
(0, R, ein) => R^(1-rho)*ein, _*.5 + R^(1-rho)*ein*.5;
(1, R, ein) => _, !;
(2, R, ein) => R0
with {
R0 = R;
};
}with{
rho = 1;
};
//----------------------`(wd.)u_resVoltage`--------------------------
// Unadapted Resistive Voltage Source.
//
// An unadapted adaptor implementing a resistive voltage source within Wave Digital Filter connection trees.
//
// It should be used as the root/top element of the connection tree.
// It is comprised of an ideal voltage source in series with a resistor.
// Can be used for either DC (constant) or AC (signal) voltage sources.
//
// #### Usage
//
// ```
// v1(i) = u_resVoltage(i, R, ein);
// buildtree( v1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `R` : Resistance/Impedance of the series resistor in Ohms
// * `ein` : Voltage/Potential across ideal voltage source in Volts
//
// Note: only usable as the root of a tree.
// The adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.4
//----------------------------------------------------------
declare u_resVoltage author "Dirk Roosenburg";
declare u_resVoltage copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_resVoltage license "MIT-style STK-4.3 license";
u_resVoltage =
case {
(0, R, ein) => b0
with{
b0(R0, a0) = a0*(R - R0)/(R+R0) + ein*(2*R0^rho)/(R + R0);
};
(1, R, ein) => !, !;
(2, R, ein) => 0;
}with{
rho = 1;
};
//----------------------`(wd.)resCurrent`--------------------------
// Adapted Resistive Current Source.
//
// An adaptor implementing a resistive current source within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// It is comprised of an ideal current source in parallel with a resistor.
// Can be used for either DC (constant) or AC (signal) current sources.
//
// #### Usage
//
// ```
// i1(i) = resCurrent(i, R, jin);
// buildtree( A : i1 );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `R` : Resistance/Impedance of the parallel resistor in Ohms
// * `jin` : Current through the ideal current source in Amps
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.5
//----------------------------------------------------------
declare resCurrent author "Dirk Roosenburg";
declare resCurrent copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare resCurrent license "MIT-style STK-4.3 license";
resCurrent =
case {
(0, R, jin) => !, R^(rho)*jin;
(1, R, jin) => _;
(2, R, jin) => R0
with {
R0 = R;
};
}with{
rho = 1; //assume voltage waves
};
//----------------------`(wd.)u_resCurrent`--------------------------
// Unadapted Resistive Current Source.
//
// An unadapted adaptor implementing a resistive current source within Wave Digital Filter connection trees.
//
// It should be used as the root/top element of the connection tree.
// It is comprised of an ideal current source in parallel with a resistor.
// Can be used for either DC (constant) or AC (signal) current sources.
//
// #### Usage
//
// ```
// i1(i) = u_resCurrent(i, R, jin);
// buildtree( i1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `R` : Resistance/Impedance of the series resistor in Ohms
// * `jin` : Current through the ideal current source in Amps
//
// Note: only usable as the root of a tree.
// The adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.5
//----------------------------------------------------------
declare u_resCurrent author "Dirk Roosenburg";
declare u_resCurrent copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_resCurrent license "MIT-style STK-4.3 license";
u_resCurrent =
case {
(0, R, jin) => b0
with{
b0(R0, a0) = a0*(R - R0)/(R + R0) + jin*(2*R*R0^rho)/(R + R0);
};
(1, R, jin) => !, !;
(2, R, jin) => 0;
}with{
rho = 1; //assume voltage waves
};
//TODO
//add short circuit (1.2.6), add open circuit (1.2.7)
//----------------------`(wd.)u_switch`--------------------------
// Unadapted Ideal Switch.
//
// An unadapted adaptor implementing an ideal switch for Wave Digital Filter connection trees.
//
// It should be used as the root/top element of the connection tree
//
// #### Usage
//
// ```
// s1(i) = u_resCurrent(i, lambda);
// buildtree( s1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `lambda` : switch state control. -1 for closed switch, 1 for open switch.
//
// Note: only usable as the root of a tree.
// The adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.2.8
//----------------------------------------------------------
declare u_switch author "Dirk Roosenburg";
declare u_switch copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_switch license "MIT-style STK-4.3 license";
u_switch =
case {
(0, lambda) => b0
with{
b0(R0, a0) = a0*lambda;
};
(1, lambda) => !, !;
(2, lambda) => 0;
};
//=============================Reactive One Port Adaptors=================================
//========================================================================================
//TODO - add mobius transform and alpha transform digitizations
//----------------------`(wd.)capacitor`--------------------------
// Adapted Capacitor.
//
// A basic adaptor implementing a capacitor for use within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// This capacitor model was digitized using the bi-linear transform.
//
// #### Usage
//
// ```
// c1(i) = capacitor(i, R);
// buildtree( A : c1 ) : _
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared.
// * `R` : Capacitance/Impedance of the capacitor being modeled in Farads.
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.3.1
//----------------------------------------------------------
declare capacitor author "Dirk Roosenburg";
declare capacitor copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare capacitor license "MIT-style STK-4.3 license";
capacitor =
case{
(0, R) => _*1;
(1, R) => _;
(2, R) => R0
with {
R0 = t/(2*R);
};
}with{
t = 1/ma.SR; //sampling interval
};
//----------------------`(wd.)capacitor_Vout`--------------------------
// Adapted Capacitor + voltage out.
//
// A basic adaptor implementing a capacitor for use within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// The capacitor will also pass the voltage across itself as an output of the model.
// This capacitor model was digitized using the bi-linear transform.
//
// #### Usage
//
// ```
// cout(i) = capacitor_Vout(i, R);
// buildtree( A : cout ) : _
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `R` : Capacitance/Impedence of the capacitor being modeled in Farads
//
// Note: the adaptor must be declared as a seperate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.3.1
//----------------------------------------------------------
declare capacitor_Vout author "Dirk Roosenburg";
declare capacitor_Vout copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare capacitor_Vout license "MIT-style STK-4.3 license";
capacitor_Vout =
case{
(0, R) => b0
with{
b0(a1) = a1*1, a1*.5 + (a1')*.5;
};
(1, R) => _, !;
(2, R) => R0
with {
R0 = t/(2*R);
};
}with{
t = 1/ma.SR; //sampling interval
};
//----------------------`(wd.)inductor`--------------------------
// Unadapted Inductor.
//
// A basic adaptor implementing an inductor for use within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// This inductor model was digitized using the bi-linear transform.
//
// #### Usage
//
// ```
// l1(i) = inductor(i, R);
// buildtree( A : l1 );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `R` : Inductance/Impedance of the inductor being modeled in Henries
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.3.2
//----------------------------------------------------------
declare inductor author "Dirk Roosenburg";
declare inductor copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare inductor license "MIT-style STK-4.3 license";
inductor =
case{
(0, R) => _*(-1);
(1, R) => _;
(2, R) => R0
with {
R0 = (2*R)/t;
};
}with{
t = 1/ma.SR; //sampling interval
};
//----------------------`(wd.)inductor_Vout`--------------------------
// Unadapted Inductor + Voltage out.
//
// A basic adaptor implementing an inductor for use within Wave Digital Filter connection trees.
//
// It should be used as a leaf/terminating element of the connection tree.
// The inductor will also pass the voltage across itself as an output of the model.
// This inductor model was digitized using the bi-linear transform.
//
// #### Usage
//
// ```
// lout(i) = inductor_Vout(i, R);
// buildtree( A : lout ) : _
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `R` : Inductance/Impedance of the inductor being modeled in Henries
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.3.2
//----------------------------------------------------------
declare inductor_Vout author "Dirk Roosenburg";
declare inductor_Vout copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare inductor_Vout license "MIT-style STK-4.3 license";
inductor_Vout =
case{
(0, R) => b0
with{
b0(a1) = a1*(-1), a1*.5 - (a1')*.5;
};
(1, R) => _, !;
(2, R) => R0
with {
R0 = (2*R)/t;
};
}with{
t = 1/ma.SR; //sampling interval
};
//===============================Nonlinear One Port Adaptors==============================
//========================================================================================
//----------------------`(wd.)u_idealDiode`--------------------------
// Unadapted Ideal Diode.
//
// An unadapted adaptor implementing an ideal diode for Wave Digital Filter connection trees.
//
// It should be used as the root/top element of the connection tree.
//
// #### Usage
//
// ```
// buildtree( u_idealDiode : B );
// ```
//
// Note: only usable as the root of a tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 3.2.3
//----------------------------------------------------------
declare u_idealDiode author "Dirk Roosenburg";
declare u_idealDiode copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_idealDiode license "MIT-style STK-4.3 license";
u_idealDiode =
case{
(0) => b1
with{
b1(R1, a0) = a0 : abs : *(-1);
};
(1) => !, !;
(2) => 0;
};
//----------------------`(wd.)u_chua`--------------------------
// Unadapted Chua Diode.
//
// An adaptor implementing the chua diode / non-linear resistor within Wave Digital Filter connection trees.
//
// It should be used as the root/top element of the connection tree.
//
// #### Usage
//
// ```
// chua1(i) = u_chua(i, G1, G2, V0);
// buildtree( chua1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `G1` : resistance parameter 1 of the chua diode
// * `G2` : resistance parameter 2 of the chua diode
// * `V0` : voltage parameter of the chua diode
//
// Note: only usable as the root of a tree.
// The adaptor must be declared as a separate function before integration into the connection tree.
// Correct implementation is shown above.
//
// #### Reference
//
// Meerkotter and Scholz, "Digital Simulation of Nonlinear Circuits by Wave Digital Filter Principles"
//----------------------------------------------------------
declare u_chua author "Dirk Roosenburg";
declare u_chua copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_chua license "MIT-style STK-4.3 license";
u_chua =
case{
(0, G1, G2, V0) => b1
with{
b1(R1, a0) = g_1*a0 + 1/2*(g_2 - g_1)*(((a0 + a_0) : abs) - ((a0 - a_0): abs))
with{
g_1 = (1-G1*R1)/(1+G1*R1);
g_2 = (1-G2*R1)/(1+G2*R1);
a_0 = V0*(1+G2*R1);
};
};
(1, G1, G2, V0) => !, !;
(2, G1, G2, V0) => 0;
};
//----------------------`(wd.)lambert`--------------------------
// An implementation of the lambert function.
// It uses Halley's method of iteration to approximate the output.
// Included in the WD library for use in non-linear diode models.
// Adapted from K M Brigg's c++ lambert function approximation.
//
// #### Usage
//
// ```
// lambert(n, itr) : _
// ```
//
// Where:
// * `n`: value at which the lambert function will be evaluated
// * `itr`: number of iterations before output
//
//----------------------------------------------------------
declare lambert author "Dirk Roosenburg";
declare lambert copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare lambert license "MIT-style STK-4.3 license";
lambert(z, itr) = ba.if((z<(-em1+.0001)), less_approx, greater_approx)
with{
less_approx = -1.0
+2.331643981597124203363536062168*r
-1.812187885639363490240191647568*q
+1.936631114492359755363277457668*r*q
-2.353551201881614516821543561516*q2
with{
q = z+em1;
r = sqrt(q);
q2 = q*q;
};
eps=4.0e-16;
em1=0.3678794411714423215955237701614608;
greater_approx = z : init : seq(i, itr, approx)
with{
init(w) = ba.if((z<1), init1, init2)
with{
init1 = -1.0+p*(1.0+p*(-0.333333333333333333333+p*0.152777777777777777777777))
with{
p = sqrt(2.0*(2.7182818284590452353602874713526625*z+1.0));
};
init2 = log(abs(z));
};
approx(w) = w-t
with{
e = exp(w);
t = (w*e-z)/(e*p-.5*(p+1.0)*(w*e-z)/p);
p = w+1;
};
};
};
//----------------------`(wd.)u_diodePair`--------------------------
// Unadapted pair of diodes facing in opposite directions.
//
// An unadapted adaptor implementing two antiparallel diodes for Wave Digital Filter connection trees.
// The behavior is approximated using Schottkey's ideal diode law.
//
// #### Usage
//
// ```
// d1(i) = u_diodePair(i, Is, Vt);
// buildtree( d1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `Is` : saturation current of the diodes
// * `Vt` : thermal resistances of the diodes
//
// Note: only usable as the root of a tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner et al. "An Improved and Generalized Diode Clipper Model for Wave Digital Filters"
//----------------------------------------------------------
declare u_diodePair author "Dirk Roosenburg";
declare u_diodePair copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_diodePair license "MIT-style STK-4.3 license";
u_diodePair =
case{
(0, Is, Vt) => b1
with{
b1(R1, a1) = a1 + 2*R1*Is - 2*Vt*lambert((R1*Is/Vt*(((a1+R1*Is)/Vt), 3) : exp));
};
(1, Is, Vt) => !, !;
(2, Is, Vt) => 0;
};
//----------------------`(wd.)u_diodeSingle`--------------------------
// Unadapted single diode.
//
// An unadapted adaptor implementing a single diode for Wave Digital Filter connection trees.
// The behavior is approximated using Schottkey's ideal diode law.
//
// #### Usage
//
// ```
// d1(i) = u_diodeSingle(i, Is, Vt);
// buildtree( d1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `Is` : saturation current of the diodes
// * `Vt` : thermal resistances of the diodes
//
// Note: only usable as the root of a tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner et al. "An Improved and Generalized Diode Clipper Model for Wave Digital Filters"
//----------------------------------------------------------
declare u_diodeSingle author "Dirk Roosenburg";
declare u_diodeSingle copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_diodeSingle license "MIT-style STK-4.3 license";
u_diodeSingle =
case{
(0, Is, Vt) => b1
with{
b1(R1, a1) = ma.signum(a1)*((a1 : abs) + 2*R1*Is - 2*Vt*(lambert((R1*Is/Vt*((((a1 : abs)+R1*Is)/Vt) : exp)),3) + lambert((-R1*Is/Vt*(((-1*(a1 : abs)+R1*Is)/Vt) : exp)),3)));
};
(1, Is, Vt) => !, !;
(2, Is, Vt) => 0;
};
//----------------------`(wd.)u_diodeAntiparallel`--------------------------
// Unadapted set of antiparallel diodes with M diodes facing forwards and N diodes facing backwards.
//
// An unadapted adaptor implementing antiparallel diodes for Wave Digital Filter connection trees.
// The behavior is approximated using Schottkey's ideal diode law.
//
// #### Usage
//
// ```
// d1(i) = u_diodeAntiparallel(i, Is, Vt);
// buildtree( d1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `Is` : saturation current of the diodes
// * `Vt` : thermal resistances of the diodes
//
// Note: only usable as the root of a tree.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner et al. "An Improved and Generalized Diode Clipper Model for Wave Digital Filters"
//----------------------------------------------------------
declare u_diodeAntiparallel author "Dirk Roosenburg";
declare u_diodeAntiparallel copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_diodeAntiparallel license "MIT-style STK-4.3 license";
u_diodeAntiparallel =
case{
(0, Is, Vt, M, N) => b1
with{
b1(R1, a1) = a1 - 2*lam*Vt*(mu0* lambert(((R1*Is)/(mu0*Vt) * exp((lam*a1)/(mu0*Vt))), 3) +
mu1* lambert(((-R1*Is)/(mu1*Vt) * exp((-lam*a1)/(mu1*Vt))), 3))
with{
lam = ma.signum(a1);
mu0 = ba.if((a1 < 0), N, M);
mu1 = ba.if((a1 > 0), M, N);
};
};
(1, Is, Vt, M, N) => !, !;
(2, Is, Vt, M, N) => 0;
};
//=============================Two Port Adaptors==========================================
//========================================================================================
//----------------------`(wd.)u_parallel2Port`--------------------------
// Unadapted 2-port parallel connection.
//
// An unadapted adaptor implementing a 2-port parallel connection between adaptors for Wave Digital Filter connection trees.
// Elements connected to this adaptor will behave as if connected in parallel in circuit.
//
// #### Usage
//
// ```
// buildtree( u_parallel2Port : (A, B) );
// ```
//
// Note: only usable as the root of a tree.
// This adaptor has no user-accessible parameters.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.1
//----------------------------------------------------------
declare u_parallel2Port author "Dirk Roosenburg";
declare u_parallel2Port copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_parallel2Port license "MIT-style STK-4.3 license";
u_parallel2Port =
case{
(0) => u_par
with{
u_par = si.bus(4) <: b0, b1;
b0(R0, R1, a0, a1) = (-a0*(R0-R1) + a1*(2*R0^rho*R1^(1-rho)))/(R0+R1);
b1(R0, R1, a0, a1) = (a1*(R0-R1) + a0*(2*R0^(1-rho)*R1^rho))/(R0+R1);
};
(1) => !, !, !, !;
(2) => 0;
}with{
rho = 1; //assume voltage waves
};
//----------------------`(wd.)parallel2Port`--------------------------
// Adapted 2-port parallel connection.
//
// An adaptor implementing a 2-port parallel connection between adaptors for Wave Digital Filter connection trees.
// Elements connected to this adaptor will behave as if connected in parallel in circuit.
//
// #### Usage
//
// ```
// buildtree( A : parallel2Port : B );
// ```
//
// Note: this adaptor has no user-accessible parameters.
// It should be used within the connection tree with one previous and one forward adaptor.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.1
//----------------------------------------------------------
declare parallel2Port author "Dirk Roosenburg";
declare parallel2Port copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare parallel2Port license "MIT-style STK-4.3 license";
parallel2Port =
case{
(0) => par_down
with{
par_down = b1;
b1(R1, a0, a1) = a0;
};
(1) => par_up
with{
par_up = b0;
b0(R1, a1) = a1;
};
(2) => R0
with{
R0(R1) = R1;
};
};
//----------------------`(wd.)u_series2Port`--------------------------
// Unadapted 2-port series connection.
//
// An unadapted adaptor implementing a 2-port series connection between adaptors for Wave Digital Filter connection trees.
// Elements connected to this adaptor will behave as if connected in series in circuit.
//
// #### Usage
//
// ```
// buildtree( u_series2Port : (A, B) );
// ```
//
// Note: only usable as the root of a tree.
// This adaptor has no user-accessible parameters.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.1
//----------------------------------------------------------
declare u_series2Port author "Dirk Roosenburg";
declare u_series2Port copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_series2Port license "MIT-style STK-4.3 license";
u_series2Port =
case{
(0) => u_ser
with{
u_ser = si.bus(4) <: b0, b1;
b0(R0, R1, a0, a1) = (-a0*(R0-R1) - a1*(2*R0^rho*R1^(1-rho)))/(R0+R1);
b1(R0, R1, a0, a1) = (a1*(R0-R1) - a0*(2*R0^(1-rho)*R1^rho))/(R0+R1);
};
(1) => !, !, !, !;
(2) => 0;
}with{
rho = 1; //assume voltage waves
};
//----------------------`(wd.)series2Port`--------------------------
// Adapted 2-port series connection.
//
// An adaptor implementing a 2-port series connection between adaptors for Wave Digital Filter connection trees.
// Elements connected to this adaptor will behave as if connected in series in circuit.
//
// #### Usage
//
// ```
// buildtree( A : series2Port : B );
// ```
//
// Note: this adaptor has no user-accessible parameters.
// It should be used within the connection tree with one previous and one forward adaptor.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.1
//----------------------------------------------------------
declare series2Port author "Dirk Roosenburg";
declare series2Port copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare series2Port license "MIT-style STK-4.3 license";
series2Port =
case{
(0) => ser_down
with{
ser_down = b1;
b1(R1, a0, a1) = -a0;
};
(1) => ser_up
with{
ser_up = b0;
b0(R1, a1) = -a1;
};
(2) => R0
with{
R0(R1) = R1;
};
};
//----------------------`(wd.)parallelCurrent`--------------------------
// Adapted 2-port parallel connection + ideal current source.
//
// An adaptor implementing a 2-port series connection and internal idealized current source between adaptors for Wave Digital Filter connection trees.
// This adaptor connects the two connected elements and an additional ideal current source in parallel.
//
// #### Usage
//
// ```
// i1(i) = parallelCurrent(i, jin);
// buildtree(A : i1 : B);
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `jin` : Current through the ideal current source in Amps
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// It should be used within a connection tree with one previous and one forward adaptor.
// Correct implementation is shown above.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.2
//----------------------------------------------------------
declare parallelCurrent author "Dirk Roosenburg";
declare parallelCurrent copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare parallelCurrent license "MIT-style STK-4.3 license";
parallelCurrent =
case{
(0, jin) => par_current_down
with{
par_current_down = b1;
b1(R1, a0, a1) = a0 + R1^rho*jin;
};
(1, jin) => par_current_up
with{
par_current_up = b0;
b0(R1, a1) = a1 + R1^rho*jin;
};
(2, jin) => R0
with{
R0(R1) = R1;
};
}with{
rho = 1; //assume voltage waves
};
//----------------------`(wd.)seriesVoltage`--------------------------
// Adapted 2-port series connection + ideal voltage source.
//
// An adaptor implementing a 2-port series connection and internal ideal voltage source between adaptors for Wave Digital Filter connection trees.
// This adaptor connects the two connected adaptors and an additional ideal voltage source in series.
//
// #### Usage
//
// ```
// v1(i) = seriesVoltage(i, vin)
// buildtree( A : v1 : B );
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `vin` : voltage across the ideal current source in Volts
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// It should be used within the connection tree with one previous and one forward adaptor.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.2
//----------------------------------------------------------
declare seriesVoltage author "Dirk Roosenburg";
declare seriesVoltage copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare seriesVoltage license "MIT-style STK-4.3 license";
seriesVoltage =
case{
(0, vin) => ser_down
with{
ser_down = b1;
b1(R1, a0, a1) = -a0 - R1^(rho-1)*vin;
};
(1, vin) => ser_up
with{
ser_up = b0;
b0(R1, a1) = -a1 - R1^(rho-1)*vin;
};
(2, vin) => R0
with{
R0(R1) = R1;
};
}with{
rho = 1; //assume voltage waves
};
//----------------------`(wd.)u_transformer`--------------------------
// Unadapted ideal transformer.
//
// An adaptor implementing an ideal transformer for Wave Digital Filter connection trees.
// The first downward-facing port corresponds to the primary winding connections, and the second downward-facing port to the secondary winding connections.
//
// #### Usage
//
// ```
// t1(i) = u_transformer(i, tr);
// buildtree(t1 : (A , B));
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `tr` : the turn ratio between the windings on the primary and secondary coils
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// It may only be used as the root of the connection tree with two forward nodes.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.3
//----------------------------------------------------------
declare u_transformer author "Dirk Roosenburg";
declare u_transformer copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_transformer license "MIT-style STK-4.3 license";
u_transformer(i, n) = u_genericNode(i, transformer_scatter)
with{
matrix(M,N,f) = si.bus(N) <: ro.interleave(N,M) : par(n,N, par(m,M,*(f(m+1,n+1)))) :> si.bus(M);
transformer_scatter(R0, R1) = matrix(2, 2, s)
with{
s(1,1) =-1*(R0-n^2*R1)/(R0+n^2*R1);
s(1,2) = (2*n*R0^rho*R1^(1-rho))/(R0+n^2*R1);
s(2,1) = (2*n*R0^(1-rho)*R1^rho)/(R0+n^2*R1);
s(2,2) = (R0-n^2*R1)/(R0+n^2*R1);
s(i,j) = 10;
rho = 1; //assume voltage waves
};
};
//----------------------`(wd.)transformer`--------------------------
// Adapted ideal transformer.
//
// An adaptor implementing an ideal transformer for Wave Digital Filter connection trees.
// The upward-facing port corresponds to the primary winding connections, and the downward-facing port to the secondary winding connections
//
// #### Usage
//
// ```
// t1(i) = transformer(i, tr);
// buildtree(A : t1 : B);
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `tr` : the turn ratio between the windings on the primary and secondary coils
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// It should be used within the connection tree with one backward and one forward nodes.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.3
//----------------------------------------------------------
declare transformer author "Dirk Roosenburg";
declare transformer copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare transformer license "MIT-style STK-4.3 license";
transformer(i, n) = genericNode(i, transformer_scatter, transformer_upPortRes)
with{
matrix(M,N,f) = si.bus(N) <: ro.interleave(N,M) : par(n,N, par(m,M,*(f(m+1,n+1)))) :> si.bus(M);
transformer_upPortRes(R1) = n^2*R1; //equation for upward-facing port resistance
transformer_scatter(R1) = matrix(2, 2, s)
with{
s(1,1) =-1*(R0-n^2*R1)/(R0+n^2*R1);
s(1,2) = (2*n*R0^rho*R1^(1-rho))/(R0+n^2*R1);
s(2,1) = (2*n*R0^(1-rho)*R1^rho)/(R0+n^2*R1);
s(2,2) = (R0-n^2*R1)/(R0+n^2*R1);
s(i,j) = 10;
rho = 1; //assume voltage waves
R0 = n^2*R1; //adapting condition
};
};
//----------------------`(wd.)u_transformerActive`--------------------------
// Unadapted ideal active transformer.
//
// An adaptor implementing an ideal transformer for Wave Digital Filter connection trees.
// The first downward-facing port corresponds to the primary winding connections, and the second downward-facing port to the secondary winding connections.
//
// #### Usage
//
// ```
// t1(i) = u_transformerActive(i, gamma1, gamma2);
// buildtree(t1 : (A , B));
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `gamma1` : the turn ratio describing the voltage relationship between the primary and secondary coils
// * `gamma2` : the turn ratio describing the current relationship between the primary and secondary coils
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// It may only be used as the root of the connection tree with two forward nodes.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.3
//----------------------------------------------------------
declare u_transformerActive author "Dirk Roosenburg";
declare u_transformerActive copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_transformerActive license "MIT-style STK-4.3 license";
u_transformerActive(i, gamma1, gamma2) = u_genericNode(i, transformerActive_scatter)
with{
matrix(M,N,f) = si.bus(N) <: ro.interleave(N,M) : par(n,N, par(m,M,*(f(m+1,n+1)))) :> si.bus(M);
transformerActive_scatter(R0, R1) = matrix(2, 2, s)
with{
s(1,1) =-1*(R0-gamma1*gamma2*R1)/(R0+gamma1*gamma2*R1);
s(1,2) = (2*gamma1*R0^rho*R1^(1-rho))/(R0+gamma1*gamma2*R1);
s(2,1) = (2*gamma2*R0^(1-rho)*R1^rho)/(R0+gamma1*gamma2*R1);
s(2,2) = (R0-gamma1*gamma2*R1)/(R0+gamma1*gamma2*R1);
s(i,j) = 10;
rho = 1; //assume voltage waves
};
};
//----------------------`(wd.)transformerActive`--------------------------
// Adapted ideal active transformer.
//
// An adaptor implementing an ideal active transformer for Wave Digital Filter connection trees.
// The upward-facing port corresponds to the primary winding connections, and the downward-facing port to the secondary winding connections
//
// #### Usage
//
// ```
// t1(i) = transformerActive(i, gamma1, gamma2);
// buildtree(A : t1 : B);
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `gamma1` : the turn ratio describing the voltage relationship between the primary and secondary coils
// * `gamma2` : the turn ratio describing the current relationship between the primary and secondary coils
//
// Note: the adaptor must be declared as a separate function before integration into the connection tree.
// It should be used within the connection tree with two forward nodes.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.4.3
//----------------------------------------------------------
declare transformerActive author "Dirk Roosenburg";
declare transformerActive copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare transformerActive license "MIT-style STK-4.3 license";
transformerActive(i, gamma1, gamma2) = genericNode(i, transformerActive_scatter, transformerActive_upPortRes)
with{
matrix(M,N,f) = si.bus(N) <: ro.interleave(N,M) : par(n,N, par(m,M,*(f(m+1,n+1)))) :> si.bus(M);
transformerActive_upPortRes(R1) = gamma1*gamma2*R1; //equation for upward-facing port resistance
transformerActive_scatter(R1) = matrix(2, 2, s)
with{
s(1,1) =-1*(R0-gamma1*gamma2*R1)/(R0+gamma1*gamma2*R1);
s(1,2) = (2*gamma1*R0^rho*R1^(1-rho))/(R0+gamma1*gamma2*R1);
s(2,1) = (2*gamma2*R0^(1-rho)*R1^rho)/(R0+gamma1*gamma2*R1);
s(2,2) = (R0-gamma1*gamma2*R1)/(R0+gamma1*gamma2*R1);
s(i,j) = 10;
rho = 1; //assume voltage waves
R0 = gamma1*gamma2*R1; //adapting condition
};
};
//===============================Three Port Adaptors======================================
//========================================================================================
//----------------------`(wd.)parallel`--------------------------
// Adapted 3-port parallel connection.
//
// An adaptor implementing a 3-port parallel connection between adaptors for Wave Digital Filter connection trees.
// This adaptor is used to connect adaptors simulating components connected in parallel in the circuit.
//
// #### Usage
//
// ```
// buildtree( A : parallel : (B, C) );
// ```
//
// Note: this adaptor has no user-accessible parameters.
// It should be used within the connection tree with one previous and two forward adaptors.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.5.1
//----------------------------------------------------------
declare parallel author "Dirk Roosenburg";
declare parallel copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare parallel license "MIT-style STK-4.3 license";
parallel=
case{
(0) => par_down
with{
par_down = si.bus(5) <: b1, b2;
b1(R1, R2, a0, a1, a2) = a0 + a1 * -R1/(R1 + R2) + a2 * R1/(R1 + R2);
b2(R1, R2, a0, a1, a2) = a0 + a1 * R2/(R1 + R2) + a2 * -R2/(R1 + R2);
};
(1) => par_up
with{
par_up = b0;
b0(R1, R2, a1, a2) = a1 * R2/(R1 + R2) + a2 * R1/(R1 + R2);
};
(2) => R0
with{
R0(R1, R2) = 1/(1/R1+1/R2);
};
};
//----------------------`(wd.)series`--------------------------
// Adapted 3-port series connection.
//
// An adaptor implementing a 3-port series connection between adaptors for Wave Digital Filter connection trees.
// This adaptor is used to connect adaptors simulating components connected in series in the circuit.
//
// #### Usage
//
// ```
//
// tree = A : (series : (B, C));
// ```
//
// Note: this adaptor has no user-accessible parameters.
// It should be used within the connection tree with one previous and two forward adaptors.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 1.5.2
//----------------------------------------------------------
declare series author "Dirk Roosenburg";
declare series copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare series license "MIT-style STK-4.3 license";
series =
case{
(0) => ser_down
with{
ser_down = si.bus(5)<: b1, b2;
b1(R1, R2, a0, a1, a2) = a0 * -R1/(R1+R2) + a1 * R2/(R1+R2) + a2 *-R1/(R1+R2);
b2(R1, R2, a0, a1, a2) = a0 * -R2/(R1+R2) + a1 * -R2/(R1+R2) + a2 * R1/(R1+R2);
};
(1) => ser_up
with{
ser_up = b0;
b0(R1, R2, a1, a2) = -a1 - a2;
};
(2) => R0
with{
R0(R1, R2) = R1 + R2;
};
};
//====================================R-Type Adaptors=====================================
//========================================================================================
//----------------------`(wd.)u_sixportPassive`--------------------------
// Unadapted six-port rigid connection.
//
// An adaptor implementing a six-port passive rigid connection between elements.
// It implements the simplest possible rigid connection found in the Fender Bassman Tonestack circuit.
//
//
// #### Usage
//
// ```
//
// tree = u_sixportPassive : (A, B, C, D, E, F));
// ```
//
// Note: this adaptor has no user-accessible parameters.
// It should be used within the connection tree with six forward adaptors.
//
// #### Reference
//
// K. Werner, "Virtual Analog Modeling of Audio Circuitry Using Wave Digital Filters", 2.1.5
//----------------------------------------------------------
declare u_sixportPassive author "Dirk Roosenburg";
declare u_sixportPassive copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_sixportPassive license "MIT-style STK-4.3 license";
u_sixportPassive(i) = genericNode(i, sixport_scatter)
with{
sixport_scatter(Ra, Rb, Rc, Rd, Re, Rf) = matrix(6, 6, mtx)
with{
mtx =
case{
(1, 1) => ((-Ra)*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(1, 2) => (2*Ra*((Rc + Re)*Rf + Rd*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(1, 3) => (2*Ra*(Rb*Rd + Re*Rf + Rd*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(1, 4) => (-1)*((2*Ra*(Rb*(Rc + Re) + Rc*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(1, 5) => (2*Ra*(Rb*Rd - Rc*Rf))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(1, 6) => (-1)*((2*Ra*(Rc*Re + Rb*(Rc + Rd + Re)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(2, 1) => (2*Rb*((Rc + Re)*Rf + Rd*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(2, 2) => (Ra*(Rd*Re - Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) - Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(2, 3) => (-1)*((2*Rb*(Ra*Re + Re*Rf + Rd*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(2, 4) => (-2*Ra*Rb*Re + 2*Rb*Rc*Rf)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(2, 5) => (2*Rb*(Ra*(Rc + Rd) + Rc*(Rd + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(2, 6) => (-1)*((2*Rb*(Rc*Rd + Ra*(Rc + Rd + Re)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(3, 1) => (2*Rc*(Rb*Rd + Re*Rf + Rd*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(3, 2) => (-1)*((2*Rc*(Ra*Re + Re*Rf + Rd*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(3, 3) => 1 - (2*Rc*(Rd*Re + Rd*Rf + Re*Rf + Rb*(Rd + Rf) + Ra*(Rb + Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(3, 4) => (-1)*((2*Rc*(Rb*Rf + Ra*(Rb + Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(3, 5) => (-1)*((2*Rc*(Ra*(Rb + Rf) + Rb*(Rd + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(3, 6) => (2*Rc*(Rb*Rd - Ra*Re))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(4, 1) => (-1)*((2*Rd*(Rb*(Rc + Re) + Rc*(Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(4, 2) => (-2*Ra*Rd*Re + 2*Rc*Rd*Rf)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(4, 3) => (-1)*((2*Rd*(Rb*Rf + Ra*(Rb + Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(4, 4) => 1 - (2*Rd*(Rc*(Re + Rf) + Ra*(Rb + Re + Rf) + Rb*(Rc + Re + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(4, 5) => (-1)*((2*Rd*((Rb + Rc)*Rf + Ra*(Rb + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(4, 6) => (-1)*((2*Rd*((Ra + Rc)*Re + Rb*(Rc + Re)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(5, 1) => (2*Re*(Rb*Rd - Rc*Rf))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(5, 2) => (2*Re*(Ra*(Rc + Rd) + Rc*(Rd + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(5, 3) => (-1)*((2*Re*(Ra*(Rb + Rf) + Rb*(Rd + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(5, 4) => (-1)*((2*Re*((Rb + Rc)*Rf + Ra*(Rb + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(5, 5) => 1 - (2*Re*((Rb + Rc)*(Rd + Rf) + Ra*(Rb + Rc + Rd + Rf)))/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(5, 6) => (2*((Rb + Rc)*Rd + Ra*(Rc + Rd))*Re)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(6, 1) => (-1)*((2*(Rc*Re + Rb*(Rc + Rd + Re))*Rf)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(6, 2) => (-1)*((2*(Rc*Rd + Ra*(Rc + Rd + Re))*Rf)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(6, 3) => (2*(Rb*Rd - Ra*Re)*Rf)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(6, 4) => (-1)*((2*((Ra + Rc)*Re + Rb*(Rc + Re))*Rf)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf))));
(6, 5) => (2*((Rb + Rc)*Rd + Ra*(Rc + Rd))*Rf)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(6, 6) => 1 - (2*(Rc*(Rd + Re) + Ra*(Rc + Rd + Re) + Rb*(Rc + Rd + Re))*Rf)/(Ra*(Rd*Re + Rb*(Rc + Rd + Re) + Rd*Rf + Re*Rf + Rc*(Re + Rf)) + Rc*(Re*Rf + Rd*(Re + Rf)) + Rb*(Re*Rf + Rc*(Rd + Rf) + Rd*(Re + Rf)));
(i, j) => 10;
};
matrix(M,N,f) = si.bus(N) <: ro.interleave(N,M) : par(n,N, par(m,M,*(f(m+1,n+1)))) :> si.bus(M);
};
};
//===============================Node Creating Functions==================================
//========================================================================================
//----------------------`(wd.)genericNode`--------------------------
// Function for generating an adapted node from another faust function or scattering matrix.
//
// This function generates a node which is suitable for use in the connection tree structure.
// `genericNode` separates the function that it is passed into upward-going and downward-going waves.
//
// #### Usage
//
// ```
// n1(i) = genericNode(i, scatter, upRes);
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `scatter` : the function which describes the the node's scattering behavior
// * `upRes` : the function which describes the node's upward-facing port-resistance
//
// Note: `scatter` must be a function with n inputs, n outputs, and n-1 parameter inputs.
// input/output 1 will be used as the adapted upward-facing port of the node, ports 2 to n will all be downward-facing.
// The first input/output pair is assumed to already be adapted - i.e. the output 1 is not dependent on input 1.
// The parameter inputs will receive the port resistances of the downward-facing ports.
//
// `upRes` must be a function with n-1 parameter inputs and 1 output.
// The parameter inputs will receive the port resistances of the downward-facing ports.
// The output should give the upward-facing port resistance of the node based on the upward-facing port resistances of the input.
//
// If used on a leaf element (n=1), the model will automatically introduce a one-sample delay.
// Thus, the output of the node at sample t based on the input, a[t], should be the output one sample ahead, b[t+1].
// This may require transformation of the output signal.
//
//----------------------------------------------------------
declare genericNode author "Dirk Roosenburg";
declare genericNode copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare genericNode license "MIT-style STK-4.3 license";
genericNode =
case{
(0, scatter, upRes) => down(inputs(scatter))
with{
down(1) = scatter; //leaf node case
down(n) = scatter : !, bus(outputs(scatter)-1); //internal node case
};
(1, scatter, upRes) => up(inputs(scatter))
with{
up(1) = _; //leaf node case
up(n) = bus(inputs(upRes)), 0 , bus(outputs(scatter)-1) : scatter : _, block(outputs(scatter)-1); //internal node case
};
(2, scatter, upRes) => upRes;
}
with{
bus(0) = 0:!;
bus(x) = si.bus(x);
block(0) = 0:!;
block(x) = si.block(x);
};
//----------------------`(wd.)genericNode_Vout`--------------------------
// Function for generating a terminating/leaf node which gives the voltage across itself as a model output.
//
// This function generates a node which is suitable for use in the connection tree structure.
// It also calculates the voltage across the element and gives it as a model output.
//
// #### Usage
//
// ```
// n1(i) = genericNode_Vout(i, scatter, upRes);
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `scatter` : the function which describes the the node's scattering behavior
// * `upRes` : the function which describes the node's upward-facing port-resistance
//
// Note: `scatter` must be a function with 1 input and 1 output.
// It should give the output from the node based on the incident wave.
//
// The model will automatically introduce a one-sample delay to the output of the function
// Thus, the output of the node at sample t based on the input, a[t], should be the output one sample ahead, b[t+1].
// This may require transformation of the output signal.
//
// `upRes` must be a function with no inputs and 1 output.
// The output should give the upward-facing port resistance of the node.
//
//----------------------------------------------------------
declare genericNode_Vout author "Dirk Roosenburg";
declare genericNode_Vout copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare genericNode_Vout license "MIT-style STK-4.3 license";
genericNode_Vout =
case{
(0, scatter, upRes) => _ <: b, voltage
with{
b(a) = a : scatter;
voltage(a) = 1/2*(a + b(a)');
};
(1, scatter, upRes) => _, !;
(2, scatter, upRes) => upRes;
};
//----------------------`(wd.)genericNode_Iout`--------------------------
// Function for generating a terminating/leaf node which gives the current through itself as a model output.
//
// This function generates a node which is suitable for use in the connection tree structure.
// It also calculates the current through the element and gives it as a model output.
//
// #### Usage
//
// ```
// n1(i) = genericNode_Iout(i, scatter, upRes);
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `scatter` : the function which describes the the node's scattering behavior
// * `upRes` : the function which describes the node's upward-facing port-resistance
//
// Note: `scatter` must be a function with 1 input and 1 output.
// It should give the output from the node based on the incident wave.
//
// The model will automatically introduce a one-sample delay to the output of the function.
// Thus, the output of the node at sample t based on the input, a[t], should be the output one sample ahead, b[t+1].
// This may require transformation of the output signal.
//
// `upRes` must be a function with no inputs and 1 output.
// The output should give the upward-facing port resistance of the node.
//
//----------------------------------------------------------
declare genericNode_Iout author "Dirk Roosenburg";
declare genericNode_Iout copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare genericNode_Iout license "MIT-style STK-4.3 license";
genericNode_Iout =
case{
(0, scatter, upRes) => _ <: b, current
with{
b(a) = a : scatter;
current(a) = 1/2/upRes*(a - b(a)');
};
(1, scatter, upRes) => _, !;
(2, scatter, upRes) => upRes;
};
//----------------------`(wd.)u_genericNode`--------------------------
// Function for generating an unadapted node from another Faust function or scattering matrix.
//
// This function generates a node which is suitable for use as the root of the connection tree structure.
//
// #### Usage
//
// ```
// n1(i) = u_genericNode(i, scatter);
// ```
//
// Where:
//
// * `i`: index used by model-building functions. Should never be user declared
// * `scatter` : the function which describes the the node's scattering behavior
//
// Note:
// `scatter` must be a function with n inputs, n outputs, and n parameter inputs.
// each input/output pair will be used as a downward-facing port of the node
// the parameter inputs will receive the port resistances of the downward-facing ports.
//
//----------------------------------------------------------
declare u_genericNode author "Dirk Roosenburg";
declare u_genericNode copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare u_genericNode license "MIT-style STK-4.3 license";
u_genericNode =
case{
(0, scatter) => scatter;
(1, scatter) => block(inputs(scatter));
(2, scatter) => 1234;
}
with{
block(0) = 0:!;
block(x) = si.block(x);
};
//===============================Model Building Functions=================================
//========================================================================================
//----------------------`(wd.)builddown`--------------------------
// Function for building the structure for calculating waves traveling down the WD connection tree.
//
// It recursively steps through the given tree, parametrizes the adaptors, and builds an algorithm.
// It is used in conjunction with the buildup() function to create a model.
//
// #### Usage
//
// ```
// builddown(A : B)~buildup(A : B);
// ```
//
// Where:
// `(A : B)` : is a connection tree composed of WD adaptors
//----------------------------------------------------------
declare builddown author "Dirk Roosenburg";
declare builddown copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare builddown license "MIT-style STK-4.3 license";
builddown(A : As) = ((upPortRes, addins(inputs(A(0)) - outputs(upPortRes))) : A(0)) , addins(inputs(pardown(As)) - outputs(A(0))) : route(mtxsum(s_mtx(As)), mtxsum(s_mtx(As)), gencross(0, 0, 0, 0, 0, s_mtx(As))) : pardown(As)
with{
//substitute for si.bus which can accept an argument of 0
addins =
case{
(0) => 0 : !;
(x) => si.bus(x);
};
//recursively build in parallel
pardown =
case{
((Ax, Axx)) => builddown(Ax), pardown(Axx);
(Ax) => builddown(Ax);
};
//generate a list of inputs from the next stage down the tree
s_mtx =
case{
((Ax, Axx)) => inputs(builddown(Ax)), s_mtx(Axx);
(Ax) => inputs(builddown(Ax));
};
//take the sum of the list
mtxsum(t_mtx) = sum(i, ba.count(t_mtx), ba.take(i+1, t_mtx));
upPortRes = parres(As);
//generate a crossover matrix for the route object based on a list of i/o dimensions
gencross =
case{
(0, 0, 0, 0, 0, (1, 1)) => 1, 1, 2, 2;
(0, 0, 0, 0, 0, (xs, xxs)) => (1, 1), gencross(2, xs+1, ba.count((xs, xxs))-1, 2, mtxsum((xs, xxs)), xxs);
(0, 0, 0, 0, 0, 0) => 0 : !;
(0, 0, 0, 0, 0, x) => par(i, x, i+1, i+1);
//((out, next, norm_index, spec_index, sum), (xs, xxs))
(msum, msum, count, fcount, msum, xs) => (fcount, msum); //output is a special output
(msum, next, count, fcount, msum, xs) => (msum, msum-count); //escape case, reached end of bus
(out, out, count, fcount, msum, (xs, xxs)) => (fcount, out), gencross(out+1, xs+out, count-1, fcount+1, msum, xxs);
(out, out, count, fcount, msum, xs) => (fcount, out), gencross(out+1, xs+out, count-1, fcount+1, msum, 0); //output is a special output
(out, next, count, fcount, msum, xs) => ((count+out), out), gencross(out+1, next, count, fcount, msum, xs); //output is not a special output
};
};
builddown(A) = A(0);
//----------------------`(wd.)buildup`--------------------------
// Function for building the structure for calculating waves traveling up the WD connection tree.
//
// It recursively steps through the given tree, parametrizes the adaptors, and builds an algorithm.
// It is used in conjunction with the builddown() function to create a full structure.
//
// #### Usage
//
// ```
// builddown(A : B)~buildup(A : B);
// ```
//
// Where:
// `(A : B)` : is a connection tree composed of WD adaptors
//----------------------------------------------------------
declare builddown author "Dirk Roosenburg";
declare builddown copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare builddown license "MIT-style STK-4.3 license";
buildup(A : As) = upPortRes, (parup(As) : route(mtxsum(s_mtx(As)), mtxsum(s_mtx(As)), gencross_up(0, 0, 0, 0, 0, s_mtx(As))) : split(s_mtx(As))) : A(1), addins(outputs(split(s_mtx(As))) + outputs(upPortRes) - inputs(A(1)))
with{
//substitute for si.bus which can accept an argument of 0
addins =
case{
(0) => 0 : !;
(x) => si.bus(x);
};
//recursively build in parallel
parup = //<: crossover(out_list(Ap)) : split(out_list(Ap))
case{
((Ax, Axx)) => buildup(Ax), parup(Axx);
(Ax) => buildup(Ax);
};
//generate a list of outputs from the next stage down the tree
s_mtx =
case{
((Ax, Axx)) => outputs(buildup(Ax)), s_mtx(Axx);
(Ax) => outputs(buildup(Ax));
};
//take the sum of a list
mtxsum(t_mtx) = sum(i, ba.count(t_mtx), ba.take(i+1, t_mtx));
//split based on a list of i/o dimensions
split(inl) = (si.bus(n) <: si.bus(n), si.bus(n)), (addins(s-n))
with{
n = ba.count(inl);
s = inl :> _;
};
//generate a crossover matrix based for the route object based on a list of i/o dimensions
gencross_up =
case{
//corner case which must be coded manually
(0, 0, 0, 0, 0, (1, 1)) => 1, 1, 2, 2;
//user access function
(0, 0, 0, 0, 0, (xs, xxs)) => (1, 1), gencross_up(2, xs+1, ba.count((xs, xxs))-1, 2, mtxsum((xs, xxs)), xxs);
//more corner cases
(0, 0, 0, 0, 0, 0) => 0: !;
(0, 0, 0, 0, 0, x) => par(i, x, i+1, i+1);
//((out, next, norm_index, spec_index, sum), (xs, xxs))
(msum, msum, count, fcount, msum, xs) => (msum, fcount); //output is a special output
(msum, next, count, fcount, msum, xs) => (msum-count, msum); //escape case, reached end of bus
(out, out, count, fcount, msum, (xs, xxs)) => (out, fcount), gencross_up(out+1, xs+out, count-1, fcount+1, msum, xxs);
(out, out, count, fcount, msum, xs) => (out, fcount), gencross_up(out+1, xs+out, count-1, fcount+1, msum, 0); //output is a special output
(out, next, count, fcount, msum, xs) => (out, (count+out)), gencross_up(out+1, next, count, fcount, msum, xs); //output is not a special output
};
upPortRes = parres(As);
};
buildup(A) = A(1);
//----------------------`(wd.)getres`--------------------------
// Function for determining the upward-facing port resistance of a partial WD connection tree.
//
// It recursively steps through the given tree, parametrizes the adaptors, and builds an algorithm.
// It is used by the buildup and builddown functions but is also helpful in testing.
//
// #### Usage
//
// ```
// getres(A : B)~getres(A : B);
// ```
//
// Where:
// `(A : B)` : is a partial connection tree composed of WD adaptors
//
// Note:
// This function cannot be used on a complete WD tree. When called on an unadapted adaptor (u_ prefix), it will create errors.
//----------------------------------------------------------
declare getres author "Dirk Roosenburg";
declare getres copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare getres license "MIT-style STK-4.3 license";
getres(A: As) = parres(As) : A(2);
getres(A) = A(2);
//----------------------`(wd.)parres`--------------------------
// Function for determining the upward-facing port resistance of a partial WD connection tree.
//
// It recursively steps through the given tree, parametrizes the adaptors, and builds an algorithm.
// It is used by the buildup and builddown functions but is also helpful in testing.
// This function is a parallelized version of `getres`.
//
// #### Usage
//
// ```
// parres((A , B))~parres((A , B));
// ```
//
// Where:
// `(A , B)` : is a partial connection tree composed of WD adaptors
//
// Note: this function cannot be used on a complete WD tree. When called on an unadapted adaptor (u_ prefix), it will create errors.
//----------------------------------------------------------
declare parres author "Dirk Roosenburg";
declare parres copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare parres license "MIT-style STK-4.3 license";
parres((Ap1, Ap2)) = getres(Ap1) , parres(Ap2);
parres(Ap) = getres(Ap);
//----------------------`(wd.)buildout`--------------------------
// Function for creating the output matrix for a WD model from a WD connection tree.
//
// It recursively steps through the given tree and creates an output matrix passing only outputs.
//
// #### Usage
//
// ```
// buildout( A : B );
// ```
//
// Where:
// `(A : B)` : is a connection tree composed of WD adaptors
//
//----------------------------------------------------------
declare buildout author "Dirk Roosenburg";
declare buildout copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare buildout license "MIT-style STK-4.3 license";
buildout(A: As) = parout(As)
with{
parout((A, Ap)) = buildout(A), parout(Ap);
parout(A) = buildout(A);
};
buildout(A) = outmtx(outputs(A(0)))
with{
outmtx(1) = !;
outmtx(2) = !, _;
};
//----------------------`(wd.)buildtree`--------------------------
// Function for building the DSP model from a WD connection tree structure.
//
// It recursively steps through the given tree, parametrizes the adaptors, and builds the algorithm.
//
// #### Usage
//
// ```
// buildtree(A : B);
// ```
//
// Where:
// `(A : B)` : a connection tree composed of WD adaptors
//----------------------------------------------------------
declare buildtree author "Dirk Roosenburg";
declare buildtree copyright "Copyright (C) 2020 by Dirk Roosenburg <dirk.roosenburg.30@gmail.com>";
declare buildtree license "MIT-style STK-4.3 license";
buildtree((A : B)) = builddown(A : B)~buildup(A : B) : buildout(A : B);
/*******************************************************************************
# Licenses
## STK 4.3 License
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
Any person wishing to distribute modifications to the Software is asked to send
the modifications to the original developer so that they can be incorporated
into the canonical version. For software copyrighted by Dirk Roosenburg,
email your modifications to <dirk.roosenburg.30@gmail.com>. This is, however, not a
binding provision of this license.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
--------------------------------------------------------------------------------
## LGPL License
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with the GNU C Library; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
*******************************************************************************/
|