1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240
|
//----------------------------------------------------------
// name: "comb_bug"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------
/* link with */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif
#ifndef FAUSTCLASS
#define FAUSTCLASS mydsp
#endif
class mydsp : public dsp {
private:
FAUSTFLOAT fslider0;
FAUSTFLOAT fslider1;
// Recursion delay iVeeec1 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec1State; // Mono Delay
FAUSTFLOAT fbutton0;
float fVec0State; // Single Delay
// Recursion delay iVeeec3 is of type kSingleDelay
// While its definition is of type kZeroDelay
int iVeeec3State; // Single Delay
FAUSTFLOAT fslider2;
float fConst0; // step: 36
FAUSTFLOAT fslider3;
// Recursion delay fVeeec6 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec6State; // Mono Delay
float fConst1; // step: 61
// Recursion delay iVeeec8 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec8State; // Mono Delay
float fConst2; // step: 74
float fVec1[2048]; // Ring Delay
FAUSTFLOAT fslider4;
float fConst3; // step: 88
float fConst4; // step: 89
// Recursion delay fVeeec10 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec10State; // Mono Delay
float fConst5; // step: 103
float fConst6; // step: 107
// Recursion delay fVeeec0 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec0State; // Single Delay
// Recursion delay fRiiic6 is of type kZeroDelay
// While its definition is of type kMaskRingDelay
FAUSTFLOAT fslider5;
// Recursion delay fVeeec15 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec15State; // Mono Delay
float fVec2State; // Single Delay
int IOTA;
int fSampleRate;
public:
virtual void metadata(Meta* m) {
m->declare("basics_lib_name", "Faust Basic Element Library");
m->declare("basics_lib_version", "0.1");
m->declare("compilation_options", "-single -scal -e comb_bug.dsp -o comb_bug_exp.dsp");
m->declare("delays_lib_name", "Faust Delay Library");
m->declare("delays_lib_version", "0.1");
m->declare("envelopes_lib_adsr_author", "Yann Orlarey");
m->declare("envelopes_lib_ar_author", "Yann Orlarey, Stéphane Letz");
m->declare("envelopes_lib_author", "GRAME");
m->declare("envelopes_lib_copyright", "GRAME");
m->declare("envelopes_lib_license", "LGPL with exception");
m->declare("envelopes_lib_name", "Faust Envelope Library");
m->declare("envelopes_lib_version", "0.0");
m->declare("filename", "comb_bug.dsp");
m->declare("filters_lib_fb_fcomb_author", "Julius O. Smith III");
m->declare("filters_lib_fb_fcomb_copyright", "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>");
m->declare("filters_lib_fb_fcomb_license", "MIT-style STK-4.3 license");
m->declare("filters_lib_lowpass0_highpass1", "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>");
m->declare("filters_lib_name", "Faust Filters Library");
m->declare("library_path", "/usr/local/share/faust/stdfaust.lib");
m->declare("maths_lib_author", "GRAME");
m->declare("maths_lib_copyright", "GRAME");
m->declare("maths_lib_license", "LGPL with exception");
m->declare("maths_lib_name", "Faust Math Library");
m->declare("maths_lib_version", "2.1");
m->declare("name", "comb_bug");
m->declare("noises_lib_name", "Faust Noise Generator Library");
m->declare("noises_lib_version", "0.0");
m->declare("signals_lib_name", "Faust Signal Routing Library");
m->declare("signals_lib_version", "0.0");
}
virtual int getNumInputs() { return 0; }
virtual int getNumOutputs() { return 2; }
static void classInit(int sample_rate) {
}
virtual void instanceConstants(int sample_rate) {
fSampleRate = sample_rate;
fConst0 = min(1.92e+05f, max(1.0f, float(fSampleRate))); // step: 36
fConst1 = (1.0f / max(1.0f, (0.1f * fConst0))); // step: 61
fConst2 = (1.0f / max(1.0f, (0.01f * fConst0))); // step: 74
fConst3 = expf(-(1e+03f / fConst0)); // step: 88
fConst4 = (1.0f - fConst3); // step: 89
fConst5 = (0.9993265f * fConst0); // step: 103
fConst6 = (1.0006735f * fConst0); // step: 107
}
virtual void instanceResetUserInterface() {
fslider0 = 0.999f;
fslider1 = 127.0f;
fbutton0 = 0.0;
fslider2 = 0.95f;
fslider3 = 0.95f;
fslider4 = 2e+02f;
fslider5 = 0.8f;
}
virtual void instanceClear() {
iVeeec1State = 0;
fVec0State = 0;
iVeeec3State = 0;
fVeeec6State = 0;
iVeeec8State = 0;
for (int i = 0; i < 2048; i++) { fVec1[i] = 0; }
fVeeec10State = 0;
fVeeec0State = 0;
fVeeec15State = 0;
fVec2State = 0;
IOTA = 0;
}
virtual void init(int sample_rate) {
classInit(sample_rate);
instanceInit(sample_rate);
}
virtual void instanceInit(int sample_rate) {
instanceConstants(sample_rate);
instanceResetUserInterface();
instanceClear();
}
virtual mydsp* clone() {
return new mydsp();
}
virtual int getSampleRate() {
return fSampleRate;
}
virtual void buildUserInterface(UI* ui_interface) {
ui_interface->openVerticalBox("comb_bug");
ui_interface->addHorizontalSlider("comb_res", &fslider0, 0.999f, -0.999f, 0.999f, 0.01f);
ui_interface->addHorizontalSlider("env_a", &fslider2, 0.95f, 0.001f, 1.0f, 0.01f);
ui_interface->addHorizontalSlider("env_r", &fslider3, 0.95f, 0.001f, 1.0f, 0.01f);
ui_interface->addHorizontalSlider("freq", &fslider4, 2e+02f, 2e+02f, 8e+02f, 1.0f);
ui_interface->addHorizontalSlider("gain", &fslider5, 0.8f, 0.0f, 1.0f, 0.01f);
ui_interface->addButton("gate", &fbutton0);
ui_interface->addHorizontalSlider("vitesse", &fslider1, 127.0f, 0.0f, 127.0f, 1.0f);
ui_interface->closeBox();
}
virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
float fSlow0 = float(fslider0); // step: 1
float fSlow1 = (3.6666243e-12f * float(fslider1)); // step: 7
int iVeeec1;
float fSlow2 = float(fbutton0); // step: 21
float fVec0[2];
int iVeeec3[2];
float fSlow3 = max(1.0f, (fConst0 * float(fslider2))); // step: 38
float fSlow4 = (1.0f / fSlow3); // step: 39
float fSlow5 = (1.0f / max(1.0f, (fConst0 * float(fslider3)))); // step: 44
float fVeeec6;
int iSlow6 = (fSlow2 == 0.0f); // step: 64
int iVeeec8;
float fSlow7 = (fConst4 * float(fslider4)); // step: 90
float fVeeec10;
float fVeeec0[2];
float fSlow8 = (0.001f * float(fslider5)); // step: 136
float fVeeec15;
float fVec2[2];
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
FAUSTFLOAT* output1 = &output[1][index]; // Zone 3
iVeeec1 = iVeeec1State;
fVec0[1] = fVec0State;
iVeeec3[1] = iVeeec3State;
fVeeec6 = fVeeec6State;
iVeeec8 = iVeeec8State;
fVeeec10 = fVeeec10State;
fVeeec0[1] = fVeeec0State;
fVeeec15 = fVeeec15State;
fVec2[1] = fVec2State;
for (int i=0; i<count; i++) {
iVeeec1 = ((1103515245 * iVeeec1) + 12345);
int iTemp0 = iVeeec3[1]; // step: 18
fVec0[0] = fSlow2;
float fTemp1 = fVec0[1]; // step: 22
iVeeec3[0] = (((iTemp0 + (iTemp0 > 0)) * (fSlow2 <= fTemp1)) + (fSlow2 > fTemp1));
float fTemp2 = float(iVeeec3[0]); // step: 29
fVeeec6 = (fSlow2 + (fVeeec6 * float((fTemp1 >= fSlow2))));
iVeeec8 = (iSlow6 * (iVeeec8 + 1));
float fTemp3 = ((fSlow0 * fVeeec0[1]) + (fSlow1 * ((float(iVeeec1) * max(0.0f, min((fSlow4 * fTemp2), ((fSlow5 * (fSlow3 - fTemp2)) + 1.0f)))) * max(0.0f, (min((fConst1 * fVeeec6), 1.0f) - (fConst2 * float(iVeeec8))))))); // step: 80
int vIota0 = IOTA&2047;
fVec1[vIota0] = fTemp3;
fVeeec10 = (fSlow7 + (fConst3 * fVeeec10));
float fTemp4 = fVeeec10; // step: 95
float fTemp5 = (fConst0 / fTemp4); // step: 96
float fTemp6 = (fTemp5 - floorf(fTemp5)); // step: 98
float fTemp7 = (((fTemp6 <= 0.06f)) ? (fConst6 / fTemp4) : (((fTemp6 >= 0.95f)) ? (fConst5 / fTemp4) : fTemp5)); // step: 109
float fTemp8 = (fTemp7 + -1.0f); // step: 110
int iTemp9 = int(fTemp8); // step: 111
int vIota1 = (IOTA-min(1025, max(0, iTemp9)))&2047;
float fTemp10 = floorf(fTemp8); // step: 115
int vIota2 = (IOTA-min(1025, max(0, (iTemp9 + 1))))&2047;
fVeeec0[0] = ((fVec1[vIota1] * (fTemp10 + (2.0f - fTemp7))) + ((fTemp7 + (-1.0f - fTemp10)) * fVec1[vIota2]));
float fRiiic6 = fVec1[vIota0]; // Zero delay
fVeeec15 = (fSlow8 + (0.999f * fVeeec15));
fVec2[0] = (fRiiic6 * fVeeec15);
float fTemp11 = (0.3f * fVec2[1]); // step: 143
output0[i] = (FAUSTFLOAT)(fTemp11); // Zone Exec Code
output1[i] = (FAUSTFLOAT)(fTemp11); // Zone Exec Code
// post processing
IOTA = IOTA+1;
fVec2[1] = fVec2[0];
fVeeec0[1] = fVeeec0[0];
iVeeec3[1] = iVeeec3[0];
fVec0[1] = fVec0[0];
}
iVeeec1State = iVeeec1;
fVec0State = fVec0[1];
iVeeec3State = iVeeec3[1];
fVeeec6State = fVeeec6;
iVeeec8State = iVeeec8;
fVeeec10State = fVeeec10;
fVeeec0State = fVeeec0[1];
fVeeec15State = fVeeec15;
fVec2State = fVec2[1];
}
}
};
|