1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
|
//----------------------------------------------------------
// name: "grain3"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------
/* link with */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif
#ifndef FAUSTCLASS
#define FAUSTCLASS mydsp
#endif
class mydsp : public dsp {
private:
class SIG0 {
private:
int fSampleRate;
// Recursion delay iVeeec10 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec10State; // Mono Delay
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
iVeeec10State = 0;
}
void fill(int count, float output[]) {
int iVeeec10;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
iVeeec10 = iVeeec10State;
for (int i=0; i<count; i++) {
iVeeec10 = (iVeeec10 + 1);
output[i] = sinf((9.58738e-05f * float((iVeeec10 + -1))));
}
iVeeec10State = iVeeec10;
output += 32;
}
}
};
class SIG1 {
private:
int fSampleRate;
// Recursion delay iVeeec12 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec12State; // Mono Delay
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
iVeeec12State = 0;
}
void fill(int count, float output[]) {
int iVeeec12;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
iVeeec12 = iVeeec12State;
for (int i=0; i<count; i++) {
iVeeec12 = (iVeeec12 + 1);
output[i] = cosf((9.58738e-05f * float((iVeeec12 + -1))));
}
iVeeec12State = iVeeec12;
output += 32;
}
}
};
FAUSTFLOAT fslider0;
float fConst0; // step: 10
float fConst1; // step: 11
// Recursion delay fVeeec0 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec0State; // Single Delay
FAUSTFLOAT fslider1;
// Recursion delay iVeeec3 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec3State; // Mono Delay
// Recursion delay iVeeec2 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec2State; // Mono Delay
float fVec0[1048576]; // Ring Delay
FAUSTFLOAT fslider2;
float fConst2; // step: 49
// Recursion delay fVeeec6 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec6State; // Mono Delay
static float ftbl0[65536];
float fConst3; // step: 86
static float ftbl1[65536];
float fConst4; // step: 101
int IOTA;
int fSampleRate;
public:
virtual void metadata(Meta* m) {
m->declare("basics_lib_name", "Faust Basic Element Library");
m->declare("basics_lib_version", "0.1");
m->declare("compilation_options", "-single -scal -e grain3.dsp -o grain3.dsp");
m->declare("delays_lib_name", "Faust Delay Library");
m->declare("delays_lib_version", "0.1");
m->declare("filename", "grain3.dsp");
m->declare("library_path", "/usr/local/share/faust/stdfaust.lib");
m->declare("maths_lib_author", "GRAME");
m->declare("maths_lib_copyright", "GRAME");
m->declare("maths_lib_license", "LGPL with exception");
m->declare("maths_lib_name", "Faust Math Library");
m->declare("maths_lib_version", "2.3");
m->declare("name", "grain3");
m->declare("noises_lib_name", "Faust Noise Generator Library");
m->declare("noises_lib_version", "0.0");
m->declare("oscillators_lib_name", "Faust Oscillator Library");
m->declare("oscillators_lib_version", "0.1");
m->declare("platform_lib_name", "Generic Platform Library");
m->declare("platform_lib_version", "0.1");
}
virtual int getNumInputs() { return 1; }
virtual int getNumOutputs() { return 1; }
static void classInit(int sample_rate) {
SIG0 sig0;
sig0.init(sample_rate);
sig0.fill(65536,ftbl0);
SIG1 sig1;
sig1.init(sample_rate);
sig1.fill(65536,ftbl1);
}
virtual void instanceConstants(int sample_rate) {
fSampleRate = sample_rate;
fConst0 = min(1.92e+05f, max(1.0f, float(fSampleRate))); // step: 10
fConst1 = (1e+03f / fConst0); // step: 11
fConst2 = (0.0005f * fConst0); // step: 49
fConst3 = ftbl0[0]; // step: 86
fConst4 = ftbl1[0]; // step: 101
}
virtual void instanceResetUserInterface() {
fslider0 = 1e+02f;
fslider1 = 0.2f;
fslider2 = 1e+03f;
}
virtual void instanceClear() {
fVeeec0State = 0;
iVeeec3State = 0;
iVeeec2State = 0;
for (int i = 0; i < 1048576; i++) { fVec0[i] = 0; }
fVeeec6State = 0;
IOTA = 0;
}
virtual void init(int sample_rate) {
classInit(sample_rate);
instanceInit(sample_rate);
}
virtual void instanceInit(int sample_rate) {
instanceConstants(sample_rate);
instanceResetUserInterface();
instanceClear();
}
virtual mydsp* clone() {
return new mydsp();
}
virtual int getSampleRate() {
return fSampleRate;
}
virtual void buildUserInterface(UI* ui_interface) {
ui_interface->openVerticalBox("grain3");
ui_interface->addHorizontalSlider("delaymax", &fslider2, 1e+03f, 1e+01f, 1e+04f, 1.0f);
ui_interface->declare(&fslider0, "unit", "msec");
ui_interface->addHorizontalSlider("grainsize", &fslider0, 1e+02f, 1.0f, 1e+03f, 1.0f);
ui_interface->addHorizontalSlider("rarefaction", &fslider1, 0.2f, 0.0f, 1.0f, 0.01f);
ui_interface->closeBox();
}
virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
float fSlow0 = (fConst1 / float(fslider0)); // step: 12
float fVeeec0[2];
float fSlow1 = float(fslider1); // step: 25
int iVeeec3;
int iVeeec2;
float fSlow2 = (fConst2 * float(fslider2)); // step: 50
float fVeeec6;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
FAUSTFLOAT* input0 = &input[0][index]; // Zone 3
FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
fVeeec0[1] = fVeeec0State;
iVeeec3 = iVeeec3State;
iVeeec2 = iVeeec2State;
fVeeec6 = fVeeec6State;
for (int i=0; i<count; i++) {
float fTemp0 = fVeeec0[1]; // step: 14
fVeeec0[0] = (fSlow0 + (fTemp0 - floorf((fSlow0 + fTemp0))));
float fTemp1 = fVeeec0[0]; // step: 20
int iTemp2 = ((fTemp1 > 0.0001f) * (fTemp0 <= 0.0001f)); // step: 23
iVeeec3 = ((1103515245 * iVeeec3) + 12345);
float fTemp3 = ((4.656613e-10f * float(iVeeec3)) + 1.0f); // step: 37
iVeeec2 = ((iTemp2) ? ((0.5f * fTemp3) > fSlow1) : iVeeec2);
float fTemp4 = (float)input0[i]; // step: 44
int vIota0 = IOTA&1048575;
fVec0[vIota0] = fTemp4;
fVeeec6 = ((iTemp2) ? (fSlow2 * fTemp3) : fVeeec6);
float fTemp5 = fVeeec6; // step: 54
int iTemp6 = int(fTemp5); // step: 55
int vIota1 = (IOTA-min(524289, max(0, iTemp6)))&1048575;
float fTemp7 = floorf(fTemp5); // step: 59
int vIota2 = (IOTA-min(524289, max(0, (iTemp6 + 1))))&1048575;
float fTemp8 = (3.1415927f * fTemp1); // step: 72
output0[i] = (FAUSTFLOAT)(((float(iVeeec2) * ((fVec0[vIota1] * (fTemp7 + (1.0f - fTemp5))) + ((fTemp5 - fTemp7) * fVec0[vIota2]))) * ((fConst3 * cosf(fTemp8)) + (fConst4 * sinf(fTemp8))))); // Zone Exec Code
// post processing
IOTA = IOTA+1;
fVeeec0[1] = fVeeec0[0];
}
fVeeec0State = fVeeec0[1];
iVeeec3State = iVeeec3;
iVeeec2State = iVeeec2;
fVeeec6State = fVeeec6;
}
}
};
float mydsp::ftbl0[65536];
float mydsp::ftbl1[65536];
|