File: osc_enable.cpp1

package info (click to toggle)
faust 2.79.3%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 397,496 kB
  • sloc: cpp: 278,433; ansic: 116,164; javascript: 18,529; vhdl: 14,052; sh: 13,884; java: 5,900; objc: 3,852; python: 3,222; makefile: 2,655; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 110; tcl: 26
file content (165 lines) | stat: -rw-r--r-- 4,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
//----------------------------------------------------------
// name: "osc_enable"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------

/* link with  */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif 


#ifndef FAUSTCLASS 
#define FAUSTCLASS mydsp
#endif

class mydsp : public dsp {
  private:
	class SIG0 {
	  private:
		int fSampleRate;
		// Recursion delay iVeeec2 is of type kMonoDelay
		// While its definition is of type kZeroDelay
		int 	iVeeec2State; // Mono Delay
	  public:
		int getNumInputs() { return 0; }
		int getNumOutputs() { return 1; }
		void init(int sample_rate) {
			fSampleRate = sample_rate;
			iVeeec2State = 0;
		}
		void fill(int count, float output[]) {
			int 	iVeeec2;
			int fullcount = count;
			for (int index = 0; index < fullcount; index += 32) {
				int count = min(32, fullcount-index);
				iVeeec2 = iVeeec2State;
				for (int i=0; i<count; i++) {
					iVeeec2 = (iVeeec2 + 1);
					output[i] = sinf((9.58738e-05f * float((iVeeec2 + -1))));
				}
				iVeeec2State = iVeeec2;
				output += 32;
			}
		}
	};


	static float 	fWave0[13];
	int 	idxfWave0;
	float 	fTempPerm0;
	float 	fConst0; // step: 21
	float 	fTempPerm1;
	// Recursion delay fVeeec0 is of type kSingleDelay
	// While its definition is of type kZeroDelay
	float 	fVeeec0State; // Single Delay
	static float 	ftbl0[65536];
	float 	fTempPerm2;
	float 	fTempPerm3;
	int fSampleRate;

  public:
	virtual void metadata(Meta* m) { 
		m->declare("filename", "osc_enable.dsp");
		m->declare("math.lib/author", "GRAME");
		m->declare("math.lib/copyright", "GRAME");
		m->declare("math.lib/deprecated", "This library is deprecated and is not maintained anymore. It will be removed in August 2017.");
		m->declare("math.lib/license", "LGPL with exception");
		m->declare("math.lib/name", "Math Library");
		m->declare("math.lib/version", "1.0");
		m->declare("music.lib/author", "GRAME");
		m->declare("music.lib/copyright", "GRAME");
		m->declare("music.lib/license", "LGPL with exception");
		m->declare("music.lib/name", "Music Library");
		m->declare("music.lib/version", "1.0");
		m->declare("name", "osc_enable");
	}

	virtual int getNumInputs() { return 0; }
	virtual int getNumOutputs() { return 5; }
	static void classInit(int sample_rate) {
		SIG0 sig0;
		sig0.init(sample_rate);
		sig0.fill(65536,ftbl0);
	}
	virtual void instanceConstants(int sample_rate) {
		fSampleRate = sample_rate;
		idxfWave0 = 0;
		fTempPerm0 = 0;
		fConst0 = (4e+02f / min(1.92e+05f, max(1.0f, float(fSampleRate)))); // step: 21
		fTempPerm1 = 0;
		fTempPerm2 = 0;
		fTempPerm3 = 0;
	}
	virtual void instanceResetUserInterface() {
	}
	virtual void instanceClear() {
		fVeeec0State = 0;
	}
	virtual void init(int sample_rate) {
		classInit(sample_rate);
		instanceInit(sample_rate);
	}
	virtual void instanceInit(int sample_rate) {
		instanceConstants(sample_rate);
		instanceResetUserInterface();
		instanceClear();
	}
	virtual mydsp* clone() {
		return new mydsp();
	}
	virtual int getSampleRate() {
		return fSampleRate;
	}
	virtual void buildUserInterface(UI* ui_interface) {
		ui_interface->openVerticalBox("osc_enable");
		ui_interface->closeBox();
	}
	virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
		float 	fTemp2 = fTempPerm0;
		float 	fTemp3 = fTempPerm1;
		float 	fVeeec0[2];
		float 	fTemp4 = fTempPerm2;
		float 	fTemp5 = fTempPerm3;
		int fullcount = count;
		for (int index = 0; index < fullcount; index += 32) {
			int count = min(32, fullcount-index);
			FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
			FAUSTFLOAT* output1 = &output[1][index]; // Zone 3
			FAUSTFLOAT* output2 = &output[2][index]; // Zone 3
			FAUSTFLOAT* output3 = &output[3][index]; // Zone 3
			FAUSTFLOAT* output4 = &output[4][index]; // Zone 3
			fVeeec0[1] = fVeeec0State;
			for (int i=0; i<count; i++) {
				float 	fTemp0 = fWave0[idxfWave0]; // step: 6
				int 	iTemp1 = (fTemp0 != 0.0f); // step: 8
				if (iTemp1) {
					fTemp2 = powf(fTemp0,2.0f);
					fTemp3 = fVeeec0[1];
					fVeeec0[0] = (fConst0 + (fTemp3 - floorf((fConst0 + fTemp3))));
					fTemp4 = ftbl0[max(0, min(int((65536.0f * fVeeec0[0])), 65535))];
					fTemp5 = (fTemp0 * fTemp4);
				}
				output0[i] = (FAUSTFLOAT)(fTemp0);  // Zone Exec Code
				output1[i] = (FAUSTFLOAT)(fTemp4);  // Zone Exec Code
				output2[i] = (FAUSTFLOAT)(fTemp5);  // Zone Exec Code
				output3[i] = (FAUSTFLOAT)(fTemp0);  // Zone Exec Code
				output4[i] = (FAUSTFLOAT)(fTemp2);  // Zone Exec Code
				// post processing
				fVeeec0[1] = fVeeec0[0];
				idxfWave0 = (idxfWave0 + 1) % 13;
			}
			fVeeec0State = fVeeec0[1];
		}
		fTempPerm0 = fTemp2;
		fTempPerm1 = fTemp3;
		fTempPerm2 = fTemp4;
		fTempPerm3 = fTemp5;
	}
};


float 	mydsp::fWave0[13] = {1,0.5f,0,0,0,0,-0.5f,-1,-0.5f,0,0,0,0};
float 	mydsp::ftbl0[65536];