1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
|
//----------------------------------------------------------
// author: "Grame"
// copyright: "(c)GRAME 2009"
// license: "BSD"
// name: "osci"
// version: "1.0"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------
/* link with */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif
#ifndef FAUSTCLASS
#define FAUSTCLASS mydsp
#endif
class mydsp : public dsp {
private:
class SIG0 {
private:
int fSampleRate;
// Recursion delay iVeeec4 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec4State; // Mono Delay
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
iVeeec4State = 0;
}
void fill(int count, float output[]) {
int iVeeec4;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
iVeeec4 = iVeeec4State;
for (int i=0; i<count; i++) {
iVeeec4 = (iVeeec4 + 1);
output[i] = sinf((9.58738e-05f * float((iVeeec4 + -1))));
}
iVeeec4State = iVeeec4;
output += 32;
}
}
};
FAUSTFLOAT fslider0;
// Recursion delay fVeeec0 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec0State; // Mono Delay
FAUSTFLOAT fslider1;
float fConst0; // step: 25
// Recursion delay fVeeec2 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec2State; // Single Delay
static float ftbl0[65537];
int fSampleRate;
public:
virtual void metadata(Meta* m) {
m->declare("author", "Grame");
m->declare("copyright", "(c)GRAME 2009");
m->declare("filename", "osci.dsp");
m->declare("license", "BSD");
m->declare("math.lib/author", "GRAME");
m->declare("math.lib/copyright", "GRAME");
m->declare("math.lib/deprecated", "This library is deprecated and is not maintained anymore. It will be removed in August 2017.");
m->declare("math.lib/license", "LGPL with exception");
m->declare("math.lib/name", "Math Library");
m->declare("math.lib/version", "1.0");
m->declare("music.lib/author", "GRAME");
m->declare("music.lib/copyright", "GRAME");
m->declare("music.lib/license", "LGPL with exception");
m->declare("music.lib/name", "Music Library");
m->declare("music.lib/version", "1.0");
m->declare("name", "osci");
m->declare("version", "1.0");
}
virtual int getNumInputs() { return 0; }
virtual int getNumOutputs() { return 1; }
static void classInit(int sample_rate) {
SIG0 sig0;
sig0.init(sample_rate);
sig0.fill(65537,ftbl0);
}
virtual void instanceConstants(int sample_rate) {
fSampleRate = sample_rate;
fConst0 = (1.0f / min(1.92e+05f, max(1.0f, float(fSampleRate)))); // step: 25
}
virtual void instanceResetUserInterface() {
fslider0 = 0.0f;
fslider1 = 564.0f;
}
virtual void instanceClear() {
fVeeec0State = 0;
fVeeec2State = 0;
}
virtual void init(int sample_rate) {
classInit(sample_rate);
instanceInit(sample_rate);
}
virtual void instanceInit(int sample_rate) {
instanceConstants(sample_rate);
instanceResetUserInterface();
instanceClear();
}
virtual mydsp* clone() {
return new mydsp();
}
virtual int getSampleRate() {
return fSampleRate;
}
virtual void buildUserInterface(UI* ui_interface) {
ui_interface->openVerticalBox("Oscillator");
ui_interface->declare(&fslider1, "unit", "Hz");
ui_interface->addHorizontalSlider("freq", &fslider1, 564.0f, 2e+01f, 2.4e+04f, 1.0f);
ui_interface->declare(&fslider0, "unit", "dB");
ui_interface->addHorizontalSlider("volume", &fslider0, 0.0f, -96.0f, 0.0f, 0.1f);
ui_interface->closeBox();
}
virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
float fSlow0 = (0.001f * powf(1e+01f,(0.05f * float(fslider0)))); // step: 12
float fVeeec0;
float fSlow1 = (fConst0 * float(fslider1)); // step: 26
float fVeeec2[2];
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
fVeeec0 = fVeeec0State;
fVeeec2[1] = fVeeec2State;
for (int i=0; i<count; i++) {
fVeeec0 = (fSlow0 + (0.999f * fVeeec0));
float fTemp0 = fVeeec2[1]; // step: 27
fVeeec2[0] = (fSlow1 + (fTemp0 - floorf((fSlow1 + fTemp0))));
float fTemp1 = (65536.0f * fVeeec2[0]); // step: 34
int iTemp2 = int(fTemp1); // step: 35
float fTemp3 = ftbl0[max(0, min(iTemp2, 65536))]; // step: 50
output0[i] = (FAUSTFLOAT)((fVeeec0 * (fTemp3 + ((fTemp1 - floorf(fTemp1)) * (ftbl0[max(0, min((iTemp2 + 1), 65536))] - fTemp3))))); // Zone Exec Code
// post processing
fVeeec2[1] = fVeeec2[0];
}
fVeeec0State = fVeeec0;
fVeeec2State = fVeeec2[1];
}
}
};
float mydsp::ftbl0[65537];
|