1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
|
//----------------------------------------------------------
// name: "phasor"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------
/* link with */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif
#ifndef FAUSTCLASS
#define FAUSTCLASS mydsp
#endif
class mydsp : public dsp {
private:
static float fWave0[4];
int idxfWave0;
static float fWave1[11];
int idxfWave1;
int iVec0State; // Single Delay
int pfPerm0;
float fConst0; // step: 19
// Recursion delay fVeeec0 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec0State; // Mono Delay
int fSampleRate;
public:
virtual void metadata(Meta* m) {
m->declare("filename", "phasor.dsp");
m->declare("math.lib/author", "GRAME");
m->declare("math.lib/copyright", "GRAME");
m->declare("math.lib/deprecated", "This library is deprecated and is not maintained anymore. It will be removed in August 2017.");
m->declare("math.lib/license", "LGPL with exception");
m->declare("math.lib/name", "Math Library");
m->declare("math.lib/version", "1.0");
m->declare("music.lib/author", "GRAME");
m->declare("music.lib/copyright", "GRAME");
m->declare("music.lib/license", "LGPL with exception");
m->declare("music.lib/name", "Music Library");
m->declare("music.lib/version", "1.0");
m->declare("name", "phasor");
}
virtual int getNumInputs() { return 0; }
virtual int getNumOutputs() { return 3; }
static void classInit(int sample_rate) {
}
virtual void instanceConstants(int sample_rate) {
fSampleRate = sample_rate;
idxfWave0 = 0;
idxfWave1 = 0;
pfPerm0 = 1;
fConst0 = (7e+02f / min(1.92e+05f, max(1.0f, float(fSampleRate)))); // step: 19
}
virtual void instanceResetUserInterface() {
}
virtual void instanceClear() {
iVec0State = 0;
fVeeec0State = 0;
}
virtual void init(int sample_rate) {
classInit(sample_rate);
instanceInit(sample_rate);
}
virtual void instanceInit(int sample_rate) {
instanceConstants(sample_rate);
instanceResetUserInterface();
instanceClear();
}
virtual mydsp* clone() {
return new mydsp();
}
virtual int getSampleRate() {
return fSampleRate;
}
virtual void buildUserInterface(UI* ui_interface) {
ui_interface->openVerticalBox("phasor");
ui_interface->closeBox();
}
virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
int iVec0[2];
float fVeeec0;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
FAUSTFLOAT* output1 = &output[1][index]; // Zone 3
FAUSTFLOAT* output2 = &output[2][index]; // Zone 3
iVec0[1] = iVec0State;
fVeeec0 = fVeeec0State;
for (int i=0; i<count; i++) {
float fTemp0 = fWave0[idxfWave0]; // step: 6
float fTemp1 = fWave1[idxfWave1]; // step: 10
iVec0[0] = (fTemp1 > 0.0f);
int pfTemp0 = pfPerm0;
pfPerm0 = iVec0[0];
float fTemp2 = ((pfTemp0) ? fTemp0 : (fConst0 + fVeeec0)); // step: 22
fVeeec0 = (fTemp2 - floorf(fTemp2));
output0[i] = (FAUSTFLOAT)(fVeeec0); // Zone Exec Code
output1[i] = (FAUSTFLOAT)(fTemp1); // Zone Exec Code
output2[i] = (FAUSTFLOAT)(fTemp0); // Zone Exec Code
// post processing
iVec0[1] = iVec0[0];
idxfWave1 = (idxfWave1 + 1) % 11;
idxfWave0 = (idxfWave0 + 1) % 4;
}
iVec0State = iVec0[1];
fVeeec0State = fVeeec0;
}
}
};
float mydsp::fWave0[4] = {0.1f,0.8f,0.9f,0.2f};
float mydsp::fWave1[11] = {0.0f,0.0f,0.0f,0.0f,1.0f,1.0f,0.0f,0.0f,0.0f,0.0f,0};
|