1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192
|
//----------------------------------------------------------
// author: "Yann Orlarey"
// copyright: "Grame"
// license: "STK-4.3"
// name: "SmoothDelay"
// version: "1.0"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------
/* link with */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif
#ifndef FAUSTCLASS
#define FAUSTCLASS mydsp
#endif
class mydsp : public dsp {
private:
FAUSTFLOAT fslider0;
float fConst0; // step: 18
float fConst1; // step: 19
FAUSTFLOAT fslider1;
float fConst2; // step: 26
// Recursion delay fVeeec0 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec0State; // Single Delay
// Recursion delay fVeeec1 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec1State; // Single Delay
// Recursion delay fVeeec2 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec2State; // Single Delay
FAUSTFLOAT fslider2;
float fVec0[524288]; // Ring Delay
// Recursion delay fVeeec3 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec3State; // Single Delay
// Recursion delay fVeeec6 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec6State; // Mono Delay
float fVec1[524288]; // Ring Delay
// Recursion delay fVeeec11 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec11State; // Mono Delay
int IOTA;
int fSampleRate;
public:
virtual void metadata(Meta* m) {
m->declare("author", "Yann Orlarey");
m->declare("copyright", "Grame");
m->declare("filename", "smoothdelay.dsp");
m->declare("license", "STK-4.3");
m->declare("math.lib/author", "GRAME");
m->declare("math.lib/copyright", "GRAME");
m->declare("math.lib/deprecated", "This library is deprecated and is not maintained anymore. It will be removed in August 2017.");
m->declare("math.lib/license", "LGPL with exception");
m->declare("math.lib/name", "Math Library");
m->declare("math.lib/version", "1.0");
m->declare("music.lib/author", "GRAME");
m->declare("music.lib/copyright", "GRAME");
m->declare("music.lib/license", "LGPL with exception");
m->declare("music.lib/name", "Music Library");
m->declare("music.lib/version", "1.0");
m->declare("name", "SmoothDelay");
m->declare("version", "1.0");
}
virtual int getNumInputs() { return 2; }
virtual int getNumOutputs() { return 2; }
static void classInit(int sample_rate) {
}
virtual void instanceConstants(int sample_rate) {
fSampleRate = sample_rate;
fConst0 = min(1.92e+05f, max(1.0f, float(fSampleRate))); // step: 18
fConst1 = (0.001f * fConst0); // step: 19
fConst2 = (1e+03f / fConst0); // step: 26
}
virtual void instanceResetUserInterface() {
fslider0 = 114.5f;
fslider1 = 68.0329f;
fslider2 = 87.11f;
}
virtual void instanceClear() {
fVeeec0State = 0;
fVeeec1State = 0;
fVeeec2State = 0;
for (int i = 0; i < 524288; i++) { fVec0[i] = 0; }
fVeeec3State = 0;
fVeeec6State = 0;
for (int i = 0; i < 524288; i++) { fVec1[i] = 0; }
fVeeec11State = 0;
IOTA = 1;
}
virtual void init(int sample_rate) {
classInit(sample_rate);
instanceInit(sample_rate);
}
virtual void instanceInit(int sample_rate) {
instanceConstants(sample_rate);
instanceResetUserInterface();
instanceClear();
}
virtual mydsp* clone() {
return new mydsp();
}
virtual int getSampleRate() {
return fSampleRate;
}
virtual void buildUserInterface(UI* ui_interface) {
ui_interface->openVerticalBox("SmoothDelay");
ui_interface->declare(&fslider0, "style", "knob");
ui_interface->declare(&fslider0, "unit", "ms");
ui_interface->addHorizontalSlider("delay", &fslider0, 114.5f, 0.0f, 5e+03f, 0.1f);
ui_interface->declare(&fslider2, "style", "knob");
ui_interface->addHorizontalSlider("feedback", &fslider2, 87.11f, 0.0f, 1e+02f, 0.1f);
ui_interface->declare(&fslider1, "style", "knob");
ui_interface->declare(&fslider1, "unit", "ms");
ui_interface->addHorizontalSlider("interpolation", &fslider1, 68.0329f, 1.0f, 1e+02f, 0.1f);
ui_interface->closeBox();
}
virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
float fSlow0 = (fConst1 * float(fslider0)); // step: 20
float fSlow1 = (fConst2 / float(fslider1)); // step: 27
float fVeeec0[2];
float fVeeec1[2];
float fVeeec2[2];
float fSlow2 = (0.01f * float(fslider2)); // step: 58
float fVeeec3[2];
float fVeeec6;
float fVeeec11;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
FAUSTFLOAT* input0 = &input[0][index]; // Zone 3
FAUSTFLOAT* input1 = &input[1][index]; // Zone 3
FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
FAUSTFLOAT* output1 = &output[1][index]; // Zone 3
fVeeec0[1] = fVeeec0State;
fVeeec1[1] = fVeeec1State;
fVeeec2[1] = fVeeec2State;
fVeeec3[1] = fVeeec3State;
fVeeec6 = fVeeec6State;
fVeeec11 = fVeeec11State;
for (int i=0; i<count; i++) {
float fTemp0 = fVeeec0[1]; // step: 3
float fTemp1 = fVeeec1[1]; // step: 5
float fTemp2 = fVeeec2[1]; // step: 21
float fTemp3 = fVeeec3[1]; // step: 29
float fTemp4 = (((fTemp0 != 0.0f)) ? ((((fTemp1 > 0.0f) & (fTemp1 < 1.0f))) ? fTemp0 : 0.0f) : ((((fTemp1 == 0.0f) & (fSlow0 != fTemp2))) ? fSlow1 : ((((fTemp1 == 1.0f) & (fSlow0 != fTemp3))) ? -fSlow1 : 0.0f))); // step: 36
fVeeec0[0] = fTemp4;
fVeeec1[0] = max(0.0f, min(1.0f, (fTemp1 + fTemp4)));
float fTemp5 = fVeeec1[0]; // step: 43
float fTemp6 = (1.0f - fTemp5); // step: 44
fVeeec2[0] = ((((fTemp1 >= 1.0f) & (fTemp3 != fSlow0))) ? fSlow0 : fTemp2);
int iTemp7 = (int(fVeeec2[0]) & 524287); // step: 53
float fTemp8 = ((float)input0[i] + (fSlow2 * fVeeec6)); // step: 60
int vIota0 = IOTA&524287;
fVec0[vIota0] = fTemp8;
int vIota1 = (IOTA-iTemp7)&524287;
fVeeec3[0] = ((((fTemp1 <= 0.0f) & (fTemp2 != fSlow0))) ? fSlow0 : fTemp3);
int iTemp9 = (int(fVeeec3[0]) & 524287); // step: 70
int vIota2 = (IOTA-iTemp9)&524287;
fVeeec6 = ((fTemp6 * fVec0[vIota1]) + (fTemp5 * fVec0[vIota2]));
float fTemp10 = ((float)input1[i] + (fSlow2 * fVeeec11)); // step: 79
fVec1[vIota0] = fTemp10;
fVeeec11 = ((fTemp6 * fVec1[vIota1]) + (fTemp5 * fVec1[vIota2]));
output0[i] = (FAUSTFLOAT)(fVeeec6); // Zone Exec Code
output1[i] = (FAUSTFLOAT)(fVeeec11); // Zone Exec Code
// post processing
IOTA = IOTA+1;
fVeeec3[1] = fVeeec3[0];
fVeeec2[1] = fVeeec2[0];
fVeeec1[1] = fVeeec1[0];
fVeeec0[1] = fVeeec0[0];
}
fVeeec0State = fVeeec0[1];
fVeeec1State = fVeeec1[1];
fVeeec2State = fVeeec2[1];
fVeeec3State = fVeeec3[1];
fVeeec6State = fVeeec6;
fVeeec11State = fVeeec11;
}
}
};
|