1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
|
//----------------------------------------------------------
// name: "table"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------
/* link with */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif
#ifndef FAUSTCLASS
#define FAUSTCLASS mydsp
#endif
class mydsp : public dsp {
private:
class SIG0 {
private:
int fSampleRate;
// Recursion delay iVeeec4 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec4State; // Mono Delay
// Recursion delay fVeeec2 is of type kCopyDelay
// While its definition is of type kZeroDelay
float fVeeec2State[3]; // Copy Delay
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
iVeeec4State = 0;
for (int j = 0; j < 3; j++) { fVeeec2State[j] = 0; }
}
void fill(int count, float output[]) {
int iVeeec4;
float fVeeec2[4];
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
iVeeec4 = iVeeec4State;
fVeeec2[1] = fVeeec2State[0];
fVeeec2[2] = fVeeec2State[1];
fVeeec2[3] = fVeeec2State[2];
for (int i=0; i<count; i++) {
float fTemp1 = fVeeec2[2]; // step: 29
float fTemp2 = fVeeec2[3]; // step: 32
iVeeec4 = ((1103515245 * iVeeec4) + 12345);
float fTemp3 = fVeeec2[1]; // step: 46
fVeeec2[0] = (((0.5221894f * fTemp2) + ((4.656613e-10f * float(iVeeec4)) + (2.494956f * fTemp3))) - (2.0172658f * fTemp1));
output[i] = (((0.049922034f * fVeeec2[0]) + (0.0506127f * fTemp1)) - ((0.095993534f * fTemp3) + (0.004408786f * fTemp2)));
// post processing
fVeeec2[3] = fVeeec2[2];
fVeeec2[2] = fVeeec2[1];
fVeeec2[1] = fVeeec2[0];
}
iVeeec4State = iVeeec4;
fVeeec2State[0] = fVeeec2[1];
fVeeec2State[1] = fVeeec2[2];
fVeeec2State[2] = fVeeec2[3];
output += 32;
}
}
};
FAUSTFLOAT fslider0;
float fConst0; // step: 10
// Recursion delay fVeeec0 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec0State; // Single Delay
static float ftbl0[65536];
int fSampleRate;
public:
virtual void metadata(Meta* m) {
m->declare("compilation_options", "-single -scal -e table.dsp -o table.dsp");
m->declare("filename", "table.dsp");
m->declare("filters_lib_fir_author", "Julius O. Smith III");
m->declare("filters_lib_fir_copyright", "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>");
m->declare("filters_lib_fir_license", "MIT-style STK-4.3 license");
m->declare("filters_lib_iir_author", "Julius O. Smith III");
m->declare("filters_lib_iir_copyright", "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>");
m->declare("filters_lib_iir_license", "MIT-style STK-4.3 license");
m->declare("filters_lib_lowpass0_highpass1", "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>");
m->declare("filters_lib_name", "Faust Filters Library");
m->declare("filters_lib_version", "0.3");
m->declare("library_path", "/usr/local/share/faust/stdfaust.lib");
m->declare("maths_lib_author", "GRAME");
m->declare("maths_lib_copyright", "GRAME");
m->declare("maths_lib_license", "LGPL with exception");
m->declare("maths_lib_name", "Faust Math Library");
m->declare("maths_lib_version", "2.3");
m->declare("name", "table");
m->declare("noises_lib_name", "Faust Noise Generator Library");
m->declare("noises_lib_version", "0.0");
m->declare("oscillators_lib_name", "Faust Oscillator Library");
m->declare("oscillators_lib_version", "0.1");
m->declare("platform_lib_name", "Generic Platform Library");
m->declare("platform_lib_version", "0.1");
}
virtual int getNumInputs() { return 0; }
virtual int getNumOutputs() { return 2; }
static void classInit(int sample_rate) {
SIG0 sig0;
sig0.init(sample_rate);
sig0.fill(65536,ftbl0);
}
virtual void instanceConstants(int sample_rate) {
fSampleRate = sample_rate;
fConst0 = (1.0f / min(1.92e+05f, max(1.0f, float(fSampleRate)))); // step: 10
}
virtual void instanceResetUserInterface() {
fslider0 = 4.4e+02f;
}
virtual void instanceClear() {
fVeeec0State = 0;
}
virtual void init(int sample_rate) {
classInit(sample_rate);
instanceInit(sample_rate);
}
virtual void instanceInit(int sample_rate) {
instanceConstants(sample_rate);
instanceResetUserInterface();
instanceClear();
}
virtual mydsp* clone() {
return new mydsp();
}
virtual int getSampleRate() {
return fSampleRate;
}
virtual void buildUserInterface(UI* ui_interface) {
ui_interface->openVerticalBox("table");
ui_interface->addHorizontalSlider("freq", &fslider0, 4.4e+02f, 5e+01f, 2e+03f, 0.01f);
ui_interface->closeBox();
}
virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
float fSlow0 = (fConst0 * float(fslider0)); // step: 11
float fVeeec0[2];
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
FAUSTFLOAT* output1 = &output[1][index]; // Zone 3
fVeeec0[1] = fVeeec0State;
for (int i=0; i<count; i++) {
float fTemp0 = fVeeec0[1]; // step: 13
fVeeec0[0] = (fSlow0 + (fTemp0 - floorf((fSlow0 + fTemp0))));
float fTemp4 = ftbl0[max(0, min(int((65536.0f * fVeeec0[0])), 65535))]; // step: 64
output0[i] = (FAUSTFLOAT)(fTemp4); // Zone Exec Code
output1[i] = (FAUSTFLOAT)(fTemp4); // Zone Exec Code
// post processing
fVeeec0[1] = fVeeec0[0];
}
fVeeec0State = fVeeec0[1];
}
}
};
float mydsp::ftbl0[65536];
|