1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
|
//----------------------------------------------------------
// name: "table2"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------
/* link with */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif
#ifndef FAUSTCLASS
#define FAUSTCLASS mydsp
#endif
class mydsp : public dsp {
private:
class SIG0 {
private:
int fSampleRate;
// Recursion delay iVeeec2 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec2State; // Mono Delay
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
iVeeec2State = 0;
}
void fill(int count, int output[]) {
int iVeeec2;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
iVeeec2 = iVeeec2State;
for (int i=0; i<count; i++) {
iVeeec2 = (iVeeec2 + 1);
output[i] = iVeeec2;
}
iVeeec2State = iVeeec2;
output += 32;
}
}
};
class SIG1 {
private:
int fSampleRate;
// Recursion delay fVeeec6 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec6State; // Mono Delay
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
fVeeec6State = 0;
}
void fill(int count, float output[]) {
float fVeeec6;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
fVeeec6 = fVeeec6State;
for (int i=0; i<count; i++) {
fVeeec6 = (fVeeec6 + 0.1f);
output[i] = fVeeec6;
}
fVeeec6State = fVeeec6;
output += 32;
}
}
};
class SIG2 {
private:
int fSampleRate;
static int iWave1[7];
int idxiWave1;
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
idxiWave1 = 0;
}
void fill(int count, int output[]) {
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
for (int i=0; i<count; i++) {
output[i] = iWave1[idxiWave1];
// post processing
idxiWave1 = (idxiWave1 + 1) % 7;
}
output += 32;
}
}
};
class SIG3 {
private:
int fSampleRate;
static float fWave3[7];
int idxfWave3;
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
idxfWave3 = 0;
}
void fill(int count, float output[]) {
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
for (int i=0; i<count; i++) {
output[i] = fWave3[idxfWave3];
// post processing
idxfWave3 = (idxfWave3 + 1) % 7;
}
output += 32;
}
}
};
// Recursion delay iVeeec0 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec0State; // Mono Delay
int itbl0[10];
// Recursion delay fVeeec4 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec4State; // Mono Delay
float ftbl1[7];
static int iWave0[7];
int idxiWave0;
int itbl2[10];
static float fWave2[7];
int idxfWave2;
float ftbl3[7];
int fSampleRate;
public:
virtual void metadata(Meta* m) {
m->declare("filename", "table2.dsp");
m->declare("name", "table2");
}
virtual int getNumInputs() { return 0; }
virtual int getNumOutputs() { return 4; }
static void classInit(int sample_rate) {
}
virtual void instanceConstants(int sample_rate) {
fSampleRate = sample_rate;
SIG0 sig0;
sig0.init(sample_rate);
sig0.fill(10,itbl0);
SIG1 sig1;
sig1.init(sample_rate);
sig1.fill(7,ftbl1);
idxiWave0 = 0;
SIG2 sig2;
sig2.init(sample_rate);
sig2.fill(10,itbl2);
idxfWave2 = 0;
SIG3 sig3;
sig3.init(sample_rate);
sig3.fill(7,ftbl3);
}
virtual void instanceResetUserInterface() {
}
virtual void instanceClear() {
iVeeec0State = 0;
fVeeec4State = 0;
}
virtual void init(int sample_rate) {
classInit(sample_rate);
instanceInit(sample_rate);
}
virtual void instanceInit(int sample_rate) {
instanceConstants(sample_rate);
instanceResetUserInterface();
instanceClear();
}
virtual mydsp* clone() {
return new mydsp();
}
virtual int getSampleRate() {
return fSampleRate;
}
virtual void buildUserInterface(UI* ui_interface) {
ui_interface->openVerticalBox("table2");
ui_interface->closeBox();
}
virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
int iVeeec0;
float fVeeec4;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
FAUSTFLOAT* output1 = &output[1][index]; // Zone 3
FAUSTFLOAT* output2 = &output[2][index]; // Zone 3
FAUSTFLOAT* output3 = &output[3][index]; // Zone 3
iVeeec0 = iVeeec0State;
fVeeec4 = fVeeec4State;
for (int i=0; i<count; i++) {
iVeeec0 = (iVeeec0 + 1);
int iTemp0 = iVeeec0; // step: 7
itbl0[((iTemp0 + 1) % 10)] = (2 * iTemp0);
fVeeec4 = (fVeeec4 + 0.1f);
float fTemp1 = fVeeec4; // step: 26
ftbl1[int(fmodf((fTemp1 + 1.0f),7.0f))] = (1.24f * fTemp1);
int iTemp2 = iWave0[idxiWave0]; // step: 49
itbl2[((iTemp2 + 1) % 10)] = int((1.24f * float(iTemp2)));
float fTemp3 = fWave2[idxfWave2]; // step: 72
ftbl3[int(fmodf((fTemp3 + 1.0f),7.0f))] = (1.24f * fTemp3);
output0[i] = (FAUSTFLOAT)(itbl0[((iTemp0 + 2) % 10)]); // Zone Exec Code
output1[i] = (FAUSTFLOAT)(ftbl1[int(fmodf((fTemp1 + 2.0f),7.0f))]); // Zone Exec Code
output2[i] = (FAUSTFLOAT)(itbl2[((iTemp2 + 2) % 10)]); // Zone Exec Code
output3[i] = (FAUSTFLOAT)(ftbl3[int(fmodf((fTemp3 + 2.0f),7.0f))]); // Zone Exec Code
// post processing
idxfWave2 = (idxfWave2 + 1) % 7;
idxiWave0 = (idxiWave0 + 1) % 7;
}
iVeeec0State = iVeeec0;
fVeeec4State = fVeeec4;
}
}
};
int mydsp::iWave0[7] = {1,2,3,7,4,8,1};
int mydsp::SIG2::iWave1[7] = {1,2,3,7,4,8,1};
float mydsp::fWave2[7] = {1.4f,2.1f,3.8f,7.12f,4.9f,8.9f,1.2f};
float mydsp::SIG3::fWave3[7] = {1.4f,2.1f,3.8f,7.12f,4.9f,8.9f,1.2f};
|