File: table2.cpp1

package info (click to toggle)
faust 2.79.3%2Bds-2
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 397,496 kB
  • sloc: cpp: 278,433; ansic: 116,164; javascript: 18,529; vhdl: 14,052; sh: 13,884; java: 5,900; objc: 3,852; python: 3,222; makefile: 2,655; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 110; tcl: 26
file content (243 lines) | stat: -rw-r--r-- 6,382 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
//----------------------------------------------------------
// name: "table2"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------

/* link with  */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif 


#ifndef FAUSTCLASS 
#define FAUSTCLASS mydsp
#endif

class mydsp : public dsp {
  private:
	class SIG0 {
	  private:
		int fSampleRate;
		// Recursion delay iVeeec2 is of type kMonoDelay
		// While its definition is of type kZeroDelay
		int 	iVeeec2State; // Mono Delay
	  public:
		int getNumInputs() { return 0; }
		int getNumOutputs() { return 1; }
		void init(int sample_rate) {
			fSampleRate = sample_rate;
			iVeeec2State = 0;
		}
		void fill(int count, int output[]) {
			int 	iVeeec2;
			int fullcount = count;
			for (int index = 0; index < fullcount; index += 32) {
				int count = min(32, fullcount-index);
				iVeeec2 = iVeeec2State;
				for (int i=0; i<count; i++) {
					iVeeec2 = (iVeeec2 + 1);
					output[i] = iVeeec2;
				}
				iVeeec2State = iVeeec2;
				output += 32;
			}
		}
	};


	class SIG1 {
	  private:
		int fSampleRate;
		// Recursion delay fVeeec6 is of type kMonoDelay
		// While its definition is of type kZeroDelay
		float 	fVeeec6State; // Mono Delay
	  public:
		int getNumInputs() { return 0; }
		int getNumOutputs() { return 1; }
		void init(int sample_rate) {
			fSampleRate = sample_rate;
			fVeeec6State = 0;
		}
		void fill(int count, float output[]) {
			float 	fVeeec6;
			int fullcount = count;
			for (int index = 0; index < fullcount; index += 32) {
				int count = min(32, fullcount-index);
				fVeeec6 = fVeeec6State;
				for (int i=0; i<count; i++) {
					fVeeec6 = (fVeeec6 + 0.1f);
					output[i] = fVeeec6;
				}
				fVeeec6State = fVeeec6;
				output += 32;
			}
		}
	};


	class SIG2 {
	  private:
		int fSampleRate;
		static int 	iWave1[7];
		int 	idxiWave1;
	  public:
		int getNumInputs() { return 0; }
		int getNumOutputs() { return 1; }
		void init(int sample_rate) {
			fSampleRate = sample_rate;
			idxiWave1 = 0;
		}
		void fill(int count, int output[]) {
			int fullcount = count;
			for (int index = 0; index < fullcount; index += 32) {
				int count = min(32, fullcount-index);
				for (int i=0; i<count; i++) {
					output[i] = iWave1[idxiWave1];
					// post processing
					idxiWave1 = (idxiWave1 + 1) % 7;
				}
				output += 32;
			}
		}
	};


	class SIG3 {
	  private:
		int fSampleRate;
		static float 	fWave3[7];
		int 	idxfWave3;
	  public:
		int getNumInputs() { return 0; }
		int getNumOutputs() { return 1; }
		void init(int sample_rate) {
			fSampleRate = sample_rate;
			idxfWave3 = 0;
		}
		void fill(int count, float output[]) {
			int fullcount = count;
			for (int index = 0; index < fullcount; index += 32) {
				int count = min(32, fullcount-index);
				for (int i=0; i<count; i++) {
					output[i] = fWave3[idxfWave3];
					// post processing
					idxfWave3 = (idxfWave3 + 1) % 7;
				}
				output += 32;
			}
		}
	};


	// Recursion delay iVeeec0 is of type kMonoDelay
	// While its definition is of type kZeroDelay
	int 	iVeeec0State; // Mono Delay
	int 	itbl0[10];
	// Recursion delay fVeeec4 is of type kMonoDelay
	// While its definition is of type kZeroDelay
	float 	fVeeec4State; // Mono Delay
	float 	ftbl1[7];
	static int 	iWave0[7];
	int 	idxiWave0;
	int 	itbl2[10];
	static float 	fWave2[7];
	int 	idxfWave2;
	float 	ftbl3[7];
	int fSampleRate;

  public:
	virtual void metadata(Meta* m) { 
		m->declare("filename", "table2.dsp");
		m->declare("name", "table2");
	}

	virtual int getNumInputs() { return 0; }
	virtual int getNumOutputs() { return 4; }
	static void classInit(int sample_rate) {
	}
	virtual void instanceConstants(int sample_rate) {
		fSampleRate = sample_rate;
		SIG0 sig0;
		sig0.init(sample_rate);
		sig0.fill(10,itbl0);
		SIG1 sig1;
		sig1.init(sample_rate);
		sig1.fill(7,ftbl1);
		idxiWave0 = 0;
		SIG2 sig2;
		sig2.init(sample_rate);
		sig2.fill(10,itbl2);
		idxfWave2 = 0;
		SIG3 sig3;
		sig3.init(sample_rate);
		sig3.fill(7,ftbl3);
	}
	virtual void instanceResetUserInterface() {
	}
	virtual void instanceClear() {
		iVeeec0State = 0;
		fVeeec4State = 0;
	}
	virtual void init(int sample_rate) {
		classInit(sample_rate);
		instanceInit(sample_rate);
	}
	virtual void instanceInit(int sample_rate) {
		instanceConstants(sample_rate);
		instanceResetUserInterface();
		instanceClear();
	}
	virtual mydsp* clone() {
		return new mydsp();
	}
	virtual int getSampleRate() {
		return fSampleRate;
	}
	virtual void buildUserInterface(UI* ui_interface) {
		ui_interface->openVerticalBox("table2");
		ui_interface->closeBox();
	}
	virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
		int 	iVeeec0;
		float 	fVeeec4;
		int fullcount = count;
		for (int index = 0; index < fullcount; index += 32) {
			int count = min(32, fullcount-index);
			FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
			FAUSTFLOAT* output1 = &output[1][index]; // Zone 3
			FAUSTFLOAT* output2 = &output[2][index]; // Zone 3
			FAUSTFLOAT* output3 = &output[3][index]; // Zone 3
			iVeeec0 = iVeeec0State;
			fVeeec4 = fVeeec4State;
			for (int i=0; i<count; i++) {
				iVeeec0 = (iVeeec0 + 1);
				int 	iTemp0 = iVeeec0; // step: 7
				itbl0[((iTemp0 + 1) % 10)] = (2 * iTemp0);
				fVeeec4 = (fVeeec4 + 0.1f);
				float 	fTemp1 = fVeeec4; // step: 26
				ftbl1[int(fmodf((fTemp1 + 1.0f),7.0f))] = (1.24f * fTemp1);
				int 	iTemp2 = iWave0[idxiWave0]; // step: 49
				itbl2[((iTemp2 + 1) % 10)] = int((1.24f * float(iTemp2)));
				float 	fTemp3 = fWave2[idxfWave2]; // step: 72
				ftbl3[int(fmodf((fTemp3 + 1.0f),7.0f))] = (1.24f * fTemp3);
				output0[i] = (FAUSTFLOAT)(itbl0[((iTemp0 + 2) % 10)]);  // Zone Exec Code
				output1[i] = (FAUSTFLOAT)(ftbl1[int(fmodf((fTemp1 + 2.0f),7.0f))]);  // Zone Exec Code
				output2[i] = (FAUSTFLOAT)(itbl2[((iTemp2 + 2) % 10)]);  // Zone Exec Code
				output3[i] = (FAUSTFLOAT)(ftbl3[int(fmodf((fTemp3 + 2.0f),7.0f))]);  // Zone Exec Code
				// post processing
				idxfWave2 = (idxfWave2 + 1) % 7;
				idxiWave0 = (idxiWave0 + 1) % 7;
			}
			iVeeec0State = iVeeec0;
			fVeeec4State = fVeeec4;
		}
	}
};


int 	mydsp::iWave0[7] = {1,2,3,7,4,8,1};
int 	mydsp::SIG2::iWave1[7] = {1,2,3,7,4,8,1};
float 	mydsp::fWave2[7] = {1.4f,2.1f,3.8f,7.12f,4.9f,8.9f,1.2f};
float 	mydsp::SIG3::fWave3[7] = {1.4f,2.1f,3.8f,7.12f,4.9f,8.9f,1.2f};