1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250
|
//----------------------------------------------------------
// author: "Oli Larkin (contact@olilarkin.co.uk)"
// copyright: "Oliver Larkin"
// name: "Thru Zero Flanger"
// version: "0.1"
//
// Code generated with Faust 2.77.2 (https://faust.grame.fr)
//----------------------------------------------------------
/* link with */
#include <math.h>
#ifndef FAUSTFLOAT
#define FAUSTFLOAT float
#endif
#ifndef FAUSTCLASS
#define FAUSTCLASS mydsp
#endif
class mydsp : public dsp {
private:
class SIG0 {
private:
int fSampleRate;
// Recursion delay iVeeec8 is of type kMonoDelay
// While its definition is of type kZeroDelay
int iVeeec8State; // Mono Delay
public:
int getNumInputs() { return 0; }
int getNumOutputs() { return 1; }
void init(int sample_rate) {
fSampleRate = sample_rate;
iVeeec8State = 0;
}
void fill(int count, float output[]) {
int iVeeec8;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
iVeeec8 = iVeeec8State;
for (int i=0; i<count; i++) {
iVeeec8 = (iVeeec8 + 1);
float fTemp14 = float((iVeeec8 + -1)); // step: 77
float fTemp15 = (0.001953125f * fTemp14); // step: 78
float fTemp16 = (0.00390625f * fTemp14); // step: 86
output[i] = (2.0f * ((float(((0.0f <= fTemp15) & (fTemp15 <= 0.5f))) * (fTemp16 + -0.5f)) + (float(((0.5f < fTemp15) & (fTemp15 <= 1.0f))) * (1.5f - fTemp16))));
}
iVeeec8State = iVeeec8;
output += 32;
}
}
};
float fVec0[4096]; // Ring Delay
FAUSTFLOAT fslider0;
float fConst0; // step: 12
float fConst1; // step: 15
float fConst2; // step: 16
// Recursion delay fVeeec0 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec0State; // Mono Delay
float fConst3; // step: 25
FAUSTFLOAT fslider1;
float fConst4; // step: 42
// Recursion delay fVeeec4 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec4State; // Mono Delay
FAUSTFLOAT fslider2;
float fConst5; // step: 52
// Recursion delay fVeeec6 is of type kSingleDelay
// While its definition is of type kZeroDelay
float fVeeec6State; // Single Delay
static float ftbl0[513];
float fVec1[4096]; // Ring Delay
FAUSTFLOAT fslider3;
float fConst6; // step: 135
// Recursion delay fVeeec14 is of type kMonoDelay
// While its definition is of type kZeroDelay
float fVeeec14State; // Mono Delay
int IOTA;
int fSampleRate;
public:
virtual void metadata(Meta* m) {
m->declare("author", "Oli Larkin (contact@olilarkin.co.uk)");
m->declare("copyright", "Oliver Larkin");
m->declare("description", "Stereo Thru Zero Flanger - warning can ZERO the sound!");
m->declare("effect.lib/name", "Faust Audio Effect Library");
m->declare("filename", "thru_zero_flanger.dsp");
m->declare("filter.lib/author", "Julius O. Smith (jos at ccrma.stanford.edu)");
m->declare("filter.lib/copyright", "Julius O. Smith III");
m->declare("filter.lib/license", "STK-4.3");
m->declare("filter.lib/name", "Faust Filter Library");
m->declare("filter.lib/reference", "https://ccrma.stanford.edu/~jos/filters/");
m->declare("filter.lib/version", "1.29");
m->declare("licence", "GPL");
m->declare("math.lib/author", "GRAME");
m->declare("math.lib/copyright", "GRAME");
m->declare("math.lib/deprecated", "This library is deprecated and is not maintained anymore. It will be removed in August 2017.");
m->declare("math.lib/license", "LGPL with exception");
m->declare("math.lib/name", "Math Library");
m->declare("math.lib/version", "1.0");
m->declare("music.lib/author", "GRAME");
m->declare("music.lib/copyright", "GRAME");
m->declare("music.lib/license", "LGPL with exception");
m->declare("music.lib/name", "Music Library");
m->declare("music.lib/version", "1.0");
m->declare("name", "Thru Zero Flanger");
m->declare("version", "0.1");
}
virtual int getNumInputs() { return 2; }
virtual int getNumOutputs() { return 2; }
static void classInit(int sample_rate) {
SIG0 sig0;
sig0.init(sample_rate);
sig0.fill(513,ftbl0);
}
virtual void instanceConstants(int sample_rate) {
fSampleRate = sample_rate;
fConst0 = min(1.92e+05f, max(1.0f, float(fSampleRate))); // step: 12
fConst1 = expf(-(2e+02f / fConst0)); // step: 15
fConst2 = (1.0f - fConst1); // step: 16
fConst3 = (0.001f * fConst0); // step: 25
fConst4 = (0.01f * fConst2); // step: 42
fConst5 = (1.0f / fConst0); // step: 52
fConst6 = (0.5f * fConst2); // step: 135
}
virtual void instanceResetUserInterface() {
fslider0 = 1e+01f;
fslider1 = 2e+01f;
fslider2 = 0.1f;
fslider3 = 0.0f;
}
virtual void instanceClear() {
for (int i = 0; i < 4096; i++) { fVec0[i] = 0; }
fVeeec0State = 0;
fVeeec4State = 0;
fVeeec6State = 0;
for (int i = 0; i < 4096; i++) { fVec1[i] = 0; }
fVeeec14State = 0;
IOTA = 1;
}
virtual void init(int sample_rate) {
classInit(sample_rate);
instanceInit(sample_rate);
}
virtual void instanceInit(int sample_rate) {
instanceConstants(sample_rate);
instanceResetUserInterface();
instanceClear();
}
virtual mydsp* clone() {
return new mydsp();
}
virtual int getSampleRate() {
return fSampleRate;
}
virtual void buildUserInterface(UI* ui_interface) {
ui_interface->openVerticalBox("Thru Zero Flanger");
ui_interface->declare(&fslider0, "OWL", "PARAMETER_B");
ui_interface->declare(&fslider0, "unit", "ms");
ui_interface->addHorizontalSlider("Delay", &fslider0, 1e+01f, 0.5f, 2e+01f, 0.01f);
ui_interface->declare(&fslider1, "OWL", "PARAMETER_D");
ui_interface->declare(&fslider1, "unit", "%");
ui_interface->addHorizontalSlider("Depth", &fslider1, 2e+01f, 3.0f, 1e+02f, 1.0f);
ui_interface->declare(&fslider3, "OWL", "PARAMETER_C");
ui_interface->addHorizontalSlider("L-R Offset", &fslider3, 0.0f, 0.0f, 1.0f, 0.001f);
ui_interface->declare(&fslider2, "OWL", "PARAMETER_A");
ui_interface->declare(&fslider2, "unit", "hz");
ui_interface->addHorizontalSlider("Rate", &fslider2, 0.1f, 0.0f, 1.0f, 0.001f);
ui_interface->closeBox();
}
virtual void compute (int count, FAUSTFLOAT** input, FAUSTFLOAT** output) {
float fSlow0 = (fConst2 * float(fslider0)); // step: 17
float fVeeec0;
float fSlow1 = (fConst4 * float(fslider1)); // step: 43
float fVeeec4;
float fSlow2 = (fConst5 * float(fslider2)); // step: 53
float fVeeec6[2];
float fSlow3 = (fConst6 * float(fslider3)); // step: 136
float fVeeec14;
int fullcount = count;
for (int index = 0; index < fullcount; index += 32) {
int count = min(32, fullcount-index);
FAUSTFLOAT* input0 = &input[0][index]; // Zone 3
FAUSTFLOAT* input1 = &input[1][index]; // Zone 3
FAUSTFLOAT* output0 = &output[0][index]; // Zone 3
FAUSTFLOAT* output1 = &output[1][index]; // Zone 3
fVeeec0 = fVeeec0State;
fVeeec4 = fVeeec4State;
fVeeec6[1] = fVeeec6State;
fVeeec14 = fVeeec14State;
for (int i=0; i<count; i++) {
float fTemp0 = (float)input0[i]; // step: 1
int vIota0 = IOTA&4095;
fVec0[vIota0] = fTemp0;
fVeeec0 = (fSlow0 + (fConst1 * fVeeec0));
float fTemp1 = fVeeec0; // step: 23
float fTemp2 = (fConst3 * fTemp1); // step: 26
int iTemp3 = int(fTemp2); // step: 27
int iTemp4 = (iTemp3 & 4095); // step: 28
int vIota1 = (IOTA-iTemp4)&4095;
float fTemp5 = float(iTemp3); // step: 30
float fTemp6 = (fTemp5 + (1.0f - fTemp2)); // step: 32
float fTemp7 = (fTemp2 - fTemp5); // step: 34
int iTemp8 = ((iTemp3 + 1) & 4095); // step: 36
int vIota2 = (IOTA-iTemp8)&4095;
fVeeec4 = (fSlow1 + (fConst1 * fVeeec4));
float fTemp9 = fVeeec4; // step: 48
float fTemp10 = fVeeec6[1]; // step: 54
fVeeec6[0] = (fSlow2 + (fTemp10 - floorf((fSlow2 + fTemp10))));
float fTemp11 = fVeeec6[0]; // step: 60
float fTemp12 = (512.0f * fmodf(fTemp11,1.0f)); // step: 62
int iTemp13 = int(fTemp12); // step: 63
float fTemp17 = ftbl0[max(0, min(iTemp13, 512))]; // step: 99
float fTemp18 = (fConst3 * (fTemp1 * ((fTemp9 * (fTemp17 + ((fTemp12 - floorf(fTemp12)) * (ftbl0[max(0, min((iTemp13 + 1), 512))] - fTemp17)))) + 1.0f))); // step: 112
int iTemp19 = int(fTemp18); // step: 113
int vIota3 = (IOTA-(iTemp19 & 4095))&4095;
float fTemp20 = float(iTemp19); // step: 116
int vIota4 = (IOTA-((iTemp19 + 1) & 4095))&4095;
float fTemp21 = (float)input1[i]; // step: 127
fVec1[vIota0] = fTemp21;
fVeeec14 = (fSlow3 + (fConst1 * fVeeec14));
float fTemp22 = (512.0f * fmodf((fTemp11 + fVeeec14),1.0f)); // step: 144
int iTemp23 = int(fTemp22); // step: 145
float fTemp24 = ftbl0[max(0, min(iTemp23, 512))]; // step: 148
float fTemp25 = (fConst3 * (fTemp1 * ((fTemp9 * (fTemp24 + ((fTemp22 - floorf(fTemp22)) * (ftbl0[max(0, min((iTemp23 + 1), 512))] - fTemp24)))) + 1.0f))); // step: 161
int iTemp26 = int(fTemp25); // step: 162
int vIota5 = (IOTA-(iTemp26 & 4095))&4095;
float fTemp27 = float(iTemp26); // step: 165
int vIota6 = (IOTA-((iTemp26 + 1) & 4095))&4095;
output0[i] = (FAUSTFLOAT)((((fVec0[vIota1] * fTemp6) + (fTemp7 * fVec0[vIota2])) - ((fVec0[vIota3] * (fTemp20 + (1.0f - fTemp18))) + ((fTemp18 - fTemp20) * fVec0[vIota4])))); // Zone Exec Code
output1[i] = (FAUSTFLOAT)((((fTemp6 * fVec1[vIota1]) + (fTemp7 * fVec1[vIota2])) - ((fVec1[vIota5] * (fTemp27 + (1.0f - fTemp25))) + ((fTemp25 - fTemp27) * fVec1[vIota6])))); // Zone Exec Code
// post processing
IOTA = IOTA+1;
fVeeec6[1] = fVeeec6[0];
}
fVeeec0State = fVeeec0;
fVeeec4State = fVeeec4;
fVeeec6State = fVeeec6[1];
fVeeec14State = fVeeec14;
}
}
};
float mydsp::ftbl0[513];
|