File: DirectedGraph.hh

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (260 lines) | stat: -rw-r--r-- 9,424 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
/*******************************************************************************
********************************************************************************

    digraph : directed graph

    Copyright © 2023 Yann Orlarey. All rights reserved.

 *******************************************************************************
 ******************************************************************************/

#pragma once

#include <cassert>
#include <cstdint>
#include <cstdio>
#include <iostream>
#include <map>
#include <memory>
#include <set>
#include <stack>

//===========================================================
// digraph : a directed graph, a set of nodes f type N and a
// set of connections between these nodes. Connections have an
// associated value, by default 0. This value is used in Faust
// to represent the time dependency between computations.
//===========================================================

template <typename N>
class digraph {
    using TWeights      = std::set<int>;
    using TDestinations = std::map<N, TWeights>;

    static inline const TWeights gEmptyWeights;

    //--------------------------------------------------------------------------
    // Real/internal structure of a graph. A graph is a set of nodes
    // and a set of connections between theses nodes. These connections
    // have integer values attached.
    class internalgraph {
       private:
        std::set<N>                fNodes;        // {n1,n2,...}
        std::map<N, TDestinations> fConnections;  // {(ni -{d1,d2,...}-> nj),...}

       public:
#if 0
        internalgraph() { std::cout << "create internalgraph " << this << '\n'; }
        ~internalgraph() { std::cout << "delete internalgraph " << this << '\n'; }
#endif
        //----------------------------------------------------------------------
        // Methods used to build the graph
        //----------------------------------------------------------------------

        // Add a node n to the graph
        void add(N n)
        {
            fNodes.insert(n);
            (void)fConnections[n];  // make sure we have an empty set of connections for n
        }

        // add two nodes with a set of connections of weights w
        void add(const N& n1, const N& n2, const TWeights& w)
        {
            add(n1);
            add(n2);
            fConnections[n1][n2].insert(w.begin(), w.end());
        }

        //----------------------------------------------------------------------
        // Methods used to query the graph
        //----------------------------------------------------------------------

        // returns the set of nodes of the graph
        [[nodiscard]] const std::set<N>& nodes() const { return fNodes; }

        // returns the set of nodes of the graph
        [[nodiscard]] const std::map<N, TDestinations>& connections() const { return fConnections; }

        // Returns the destinations of node n in the graph
        [[nodiscard]] const TDestinations& destinations(const N& n) const
        {
            assert(fNodes.find(n) != fNodes.end());
            return fConnections.at(n);
        }

        // Returns true is n1 and n2 are connected in the graph
        [[nodiscard]] bool areConnected(const N& n1, const N& n2) const
        {
            // check we test connexions between existing nodes
            assert(fNodes.find(n1) != fNodes.end());
            assert(fNodes.find(n2) != fNodes.end());
            auto cnx1 = fConnections.find(n1);
            if (cnx1 == fConnections.end()) {
                // n1 has no connection
                return false;
            } else {
                auto cnx2 = cnx1->second.find(n2);
                if (cnx2 == cnx1->second.end()) {
                    // n1 has connections, but not to n2
                    return false;
                } else {
                    // its seems we have connections between n1 and n2,
                    // but we need to check
                    const std::set<int>& w12 = cnx2->second;
                    return !w12.empty();
                }
            }
        }

        // Returns the destinations of node n in the graph
        [[nodiscard]] bool areConnected(const N& n1, const N& n2, int& d) const
        {
            // check we test connexions between existing nodes
            assert(fNodes.find(n1) != fNodes.end());
            assert(fNodes.find(n2) != fNodes.end());
            auto cnx1 = fConnections.find(n1);
            if (cnx1 == fConnections.end()) {
                // n1 has no connection
                return false;
            } else {
                auto cnx2 = cnx1->second.find(n2);
                if (cnx2 == cnx1->second.end()) {
                    // n1 has connections, but not to n2
                    return false;
                } else {
                    // its seems we have connections between n1 and n2,
                    // but we need to check
                    const std::set<int>& w12 = cnx2->second;
                    if (!w12.empty()) {
                        d = *w12.begin();
                        return true;
                    } else {
                        return false;
                    }
                }
            }
        }

        // Returns the weights of the connections between two nodes
        [[nodiscard]] const TWeights& weights(const N& n1, const N& n2) const
        {
            // check we test connexions between existing nodes
            assert(fNodes.find(n1) != fNodes.end());
            assert(fNodes.find(n2) != fNodes.end());
            auto cnx1 = fConnections.find(n1);
            if (cnx1 == fConnections.end()) {
                // n1 has no connection
                return gEmptyWeights;
            } else {
                auto cnx2 = cnx1->second.find(n2);
                if (cnx2 == cnx1->second.end()) {
                    // n1 has connections, but not to n2
                    return gEmptyWeights;
                } else {
                    // its seems we have connections between n1 and n2,
                    // but we need to check
                    const std::set<int>& w12 = cnx2->second;
                    return w12;
                }
            }
        }
    };

    std::shared_ptr<internalgraph> fContent = std::make_shared<internalgraph>();

   public:
    //--------------------------------------------------------------------------
    // Methods used to build the graph
    //--------------------------------------------------------------------------

    // Add the node n to the graph
    digraph& add(N n)
    {
        fContent->add(n);
        return *this;
    }

    // add two nodes with a set of connections of weights w
    digraph& add(const N& n1, const N& n2, const TWeights& w)
    {
        fContent->add(n1, n2, w);
        return *this;
    }

    // Add the nodes n1 and n2 and the connection (n1 -d-> n2) to the graph.
    digraph& add(const N& n1, const N& n2, int d = 0)
    {
        fContent->add(n1, n2, {d});
        return *this;
    }

    // add a whole graph g
    digraph& add(const digraph& g)
    {
        for (auto& n : g.nodes()) {
            add(n);
            for (auto& c : g.destinations(n)) {
                add(n, c.first, c.second);
            }
        }
        return *this;
    }

    //--------------------------------------------------------------------------
    // Methods used to visit the graph
    //--------------------------------------------------------------------------

    // returns the set of nodes of the graph
    [[nodiscard]] const std::set<N>& nodes() const { return fContent->nodes(); }

    // returns the set of nodes of the graph
    [[nodiscard]] const std::map<N, TDestinations>& connections() const
    {
        return fContent->connections();
    }

    // returns the destinations of node n in the graph
    [[nodiscard]] const TDestinations& destinations(const N& n) const
    {
        return fContent->destinations(n);
    }

    // returns the weights of the connections between two nodes
    [[nodiscard]] const TWeights& weights(const N& n1, const N& n2) const
    {
        return fContent->weights(n1, n2);
    }

    //--------------------------------------------------------------------------
    // Methods used to query the graph
    //--------------------------------------------------------------------------

    // true is there is any connection between nodes n1 and n2
    [[nodiscard]] bool areConnected(const N& n1, const N& n2) const
    {
        return fContent->areConnected(n1, n2);
    }

    // true is there is any connection between nodes n1 and n2.
    // The smallest weight is returned in d.
    bool areConnected(const N& n1, const N& n2, int& d) const
    {
        return fContent->areConnected(n1, n2, d);
    }

    //--------------------------------------------------------------------------
    // compare graphs for maps and other containers
    //--------------------------------------------------------------------------

    friend bool operator<(const digraph& p1, const digraph& p2)
    {
        return (p1.nodes() < p2.nodes()) ||
               ((p1.nodes() == p2.nodes()) && (p1.connections() < p2.connections()));
    }

    friend bool operator==(const digraph& p1, const digraph& p2)
    {
        return p1.nodes() == p2.nodes() && p1.connections() == p2.connections();
    }
};