1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871
|
/*******************************************************************************
********************************************************************************
digraphop : a set of operations on directed graphs
Created by Yann Orlarey on 31/01/2022.
Copyright © 2023 Yann Orlarey. All rights reserved.
*******************************************************************************
******************************************************************************/
#pragma once
#include <functional>
#include <iostream>
#include <list>
#include <sstream>
#include <vector>
#include "DirectedGraph.hh"
#include "Schedule.hh"
//===========================================================
//===========================================================
// Partitions a graph into strongly connected components
// USAGE : Tarjan<N> t(mygraph); ...t.partition()...
//===========================================================
//===========================================================
template <typename N>
class Tarjan {
// Additional information associated to each node
// during the visit
struct tarjanAux {
bool fVisited = false;
bool fStacked = false;
int fNum1 = 0;
int fNum2 = 0;
};
const digraph<N> fGraph;
int fGroup = 0;
std::stack<N> fStack;
std::map<N, tarjanAux> fAux;
std::set<std::set<N>> fPartition;
int fCycleCount = 0;
// visit a specific node n of the graph
void visit(const N& v)
{
// std::cout << "start (first) visit of " << v << '\n';
auto& x = fAux[v];
fStack.push(v);
x.fStacked = true;
x.fVisited = true;
x.fNum1 = x.fNum2 = fGroup;
++fGroup;
// std::cout << "visit all nodes connected to " << v << '\n';
for (const auto& p : fGraph.destinations(v)) {
// std::cout << "we have a connection " << v << "-" << p.second << "->" << p.first <<
// '\n';
const N& w = p.first;
auto& y = fAux[w];
if (!y.fVisited) {
visit(w);
x.fNum2 = std::min(x.fNum2, y.fNum2);
} else {
if (y.fStacked) {
// std::cout << "the node " << w << " is already in the std::stack" <<
// '\n';
x.fNum2 = std::min(x.fNum2, y.fNum1);
}
}
}
if (x.fNum1 == x.fNum2) {
// std::cout << "the node " << v << " is the root of a cycle" << '\n';
std::set<N> cycle;
bool finished = false;
do {
const N& w = fStack.top();
fStack.pop();
fAux[w].fStacked = false;
cycle.insert(w);
finished = (w == v);
} while (!finished);
fPartition.insert(cycle);
if ((cycle.size() > 1) || fGraph.areConnected(v, v)) {
fCycleCount++;
}
}
// std::cout << "end (first) visit of " << v << '\n';
}
public:
explicit Tarjan(const digraph<N>& g) : fGraph(g)
{
for (const auto& n : fGraph.nodes()) {
if (fAux.find(n) == fAux.end()) {
visit(n);
}
}
}
[[nodiscard]] const std::set<std::set<N>>& partition() const { return fPartition; }
[[nodiscard]] int cycles() const { return fCycleCount; }
};
//===========================================================
//===========================================================
// cycles:graph->int : counts the number of cycles
// (strongly connected components) of a graph
//===========================================================
//===========================================================
template <typename N>
inline int cycles(const digraph<N>& g)
{
Tarjan<N> T(g);
return T.cycles();
}
//===========================================================
//===========================================================
// graph2dag : transforms a graph into a dag of supernodes,
// ie strongly connected components. The connection value
// between two supernodes A and B is the smallest value of all
// the destinations between nodes of A and nodes of B.
//===========================================================
//===========================================================
template <typename N>
inline digraph<digraph<N>> graph2dag(const digraph<N>& g)
{
Tarjan<N> T(g); // the partition of g
std::map<N, digraph<N>> M; // std::mapping between nodes and supernodes
digraph<digraph<N>> sg; // the resulting supergraph
// build the graph of supernodes
// For each std::set s of the partition, create the corresponding graph sn
// create also a std::mapping in order to retrieve the supernode a node
/// belongs to.
for (const auto& s : T.partition()) {
digraph<N> sn; // the supernode graph
for (const N& n : s) { // for each node of a cycle
M.insert(std::make_pair(n, sn)); // remember its supernode
sn.add(n); // and add it to the super node
}
sg.add(sn); // and add the super node to the super graph
}
// compute the destinations between the supernodes
for (const auto& n1 : g.nodes()) {
digraph<N> sn1(M[n1]);
for (const auto& c : g.destinations(n1)) {
const N& n2 = c.first;
const auto& W12 = c.second;
digraph<N> sn2(M[n2]);
if (sn1 == sn2) {
// the connection is inside the same supernode
sn1.add(n1, n2, W12);
} else {
// the connection is between supernodes
sg.add(sn1, sn2, W12); // exploit the fact that add will keep the mini
}
}
}
return sg;
}
//===========================================================
//===========================================================
// graph2dag2 : transforms a graph into a dag of supernodes,
// ie strongly connected components. The connection value
// between two supernodes A and B is the number of existing
// destinations between nodes of A and nodes of B.
//===========================================================
//===========================================================
template <typename N>
inline digraph<digraph<N>> graph2dag2(const digraph<N>& g)
{
Tarjan<N> T(g); // the partition of g
std::map<N, digraph<N>> M; // std::mapping between nodes and supernodes
digraph<digraph<N>> sg; // the resulting supergraph
std::map<std::pair<digraph<N>, digraph<N>>, int>
CC; // count of destinations between supernodes
// build the graph of supernodes
// for each std::set s of the partition, create the corresponding graph sn
// create also a std::mapping in order to retrieve the supernode a node
/// belongs to.
for (const auto& s : T.partition()) {
digraph<N> sn; // the supernode graph
for (const N& n : s) { // for each node of a cycle
M.insert(std::make_pair(n, sn)); // remember its supernode
sn.add(n); // and add it to the super node
}
sg.add(sn); // and add the super node to the super graph
}
// compute the number of destinations between the supernodes
for (const auto& n1 : g.nodes()) { // for each node n1
digraph<N> sn1(M[n1]); // retrieve the supernode
for (const auto& c : g.destinations(n1)) { // for each destination of n
digraph<N> sn2(M[c.first]);
if (sn1 == sn2) {
// the connection is inside the same supernode
sn1.add(n1, c.first, c.second);
} else {
// We count the external destinations between two supernodes
CC[std::make_pair(sn1, sn2)] += 1;
}
}
}
// we connect the super nodes using the count of external destinations
for (const auto& entry : CC) {
sg.add(entry.first.first, entry.first.second, entry.second);
}
return sg;
}
//===========================================================
//===========================================================
//
// parallelize : transforms a DAG into a sequential std::vector
// of parallel vectors of nodes using a topological sort.
//
//===========================================================
//===========================================================
template <typename N>
inline std::vector<std::vector<N>> parallelize(const digraph<N>& g)
{
//-----------------------------------------------------------
// Find the level of a node n -> {m1,m2,...} such that
// level(n -> {}) = 0
// level(n -> {m1,m2,...}) = 1 + std::max(level(mi))
//-----------------------------------------------------------
using Levelfun = std::function<int(const N&, std::map<N, int>&)>;
Levelfun level = [&g, &level](const N& n1, std::map<N, int>& levelcache) -> int {
auto p = levelcache.find(n1);
if (p != levelcache.end()) {
return p->second;
} else {
int l = -1;
for (const auto& e : g.destinations(n1)) {
l = std::max(l, level(e.first, levelcache));
}
return levelcache[n1] = l + 1;
}
};
std::map<N, int> levelcache;
// compute the level of each node in the graph
int l = -1;
for (const N& n : g.nodes()) {
l = std::max(l, level(n, levelcache));
}
// create a graph for each level and place
// each node in the appropriate level
std::vector<std::vector<N>> v;
v.resize(l + 1);
for (const N& n : g.nodes()) {
v[levelcache[n]].push_back(n);
}
return v;
}
template <typename N>
inline std::vector<std::vector<N>> rparallelize(const digraph<N>& G)
{
std::vector<std::vector<N>> P = parallelize(G);
int i = 0;
int j = int(P.size()) - 1;
while (i < j) {
swap(P[i], P[j]);
++i;
--j;
}
return P;
}
//===========================================================
//===========================================================
// serialize : transforms a DAG into a sequence of nodes
// using a topological sort.
//===========================================================
//===========================================================
template <typename N>
inline std::vector<N> serialize(const digraph<N>& G)
{
//------------------------------------------------------------------------
// visit : a local std::function (simulated using a lambda) to visit a graph
// g : the graph
// n : the node
// V : std::set of already visited nodes
// S : serialized std::vector of nodes
//------------------------------------------------------------------------
using Visitfun =
std::function<void(const digraph<N>&, const N&, std::set<N>&, std::vector<N>&)>;
Visitfun visit = [&visit](const digraph<N>& g, const N& n, std::set<N>& V, std::vector<N>& S) {
if (V.find(n) == V.end()) {
V.insert(n);
for (const auto& p : g.destinations(n)) {
visit(g, p.first, V, S);
}
S.push_back(n);
}
};
std::vector<N> S;
std::set<N> V;
for (const N& n : G.nodes()) {
visit(G, n, V, S);
}
return S;
}
//===========================================================
//===========================================================
// std::mapgraph(foo) : transforms a graph by applying foo:N->M
// to each node of graph. The destinations are preserved.
//===========================================================
//===========================================================
template <typename N, typename M>
inline digraph<M> mapnodes(const digraph<N>& g, std::function<M(const N&)> foo)
{
digraph<M> r;
std::map<N, M> cache;
// create a new graph with the transformed nodes
for (const auto& n1 : g.nodes()) {
M n2 = foo(n1);
r.add(n2);
cache.insert(std::make_pair(n1, n2));
}
// copy the destinations
for (const auto& n : g.nodes()) {
for (const auto& cnx : g.destinations(n)) {
r.add(cache[n], cache[cnx.first], cnx.second);
}
}
return r;
}
//===========================================================
//===========================================================
// reverse(g) : reverse all the destinations of a graph. The
// destinations keep their value.
// Property : reverse(reverse(g)) = g;
//===========================================================
//===========================================================
template <typename N>
inline digraph<N> reverse(const digraph<N>& g)
{
digraph<N> r;
// copy the destinations
for (const auto& n : g.nodes()) {
r.add(n);
for (const auto& cnx : g.destinations(n)) {
r.add(cnx.first, n, cnx.second);
}
}
return r;
}
#if 0
//===========================================================
//===========================================================
// mapconnections(g, keep) -> g' : transforms a graph by
// applying the std::function keep to each connection. If keep
// returns true the connection is maintained, otherwise it
// is removed.
//===========================================================
//===========================================================
template <typename N>
inline digraph<N> mapconnections(const digraph<N>& G,
std::function<bool(const N&, const N&, const std::set<int>&)> keep)
{
digraph<N> R;
for (const N& n : G.nodes()) {
R.add(n);
for (const auto& c : G.destinations(n)) {
if (keep(n, c.first, c.second)) {
R.add(n, c.first, c.second);
}
}
}
return R;
}
#endif
//===========================================================
//===========================================================
// splitgraph(G, left, L, R)
//===========================================================
//===========================================================
/**
* @brief split a graph into two subgraphs L and R according to a predicate.
*
* @tparam N the type of nodes
* @param G the input graph
* @param left a node predicate, when true the node goes to L, otherwise to R
* @param L resulting graph of left nodes
* @param R resulting graph of right nodes
*/
template <typename N>
void splitgraph(const digraph<N>& G, std::function<bool(const N&)> left, digraph<N>& L,
digraph<N>& R)
{
for (auto n : G.nodes()) {
if (left(n)) {
L.add(n);
for (const auto& c : G.destinations(n)) {
if (left(c.first)) {
L.add(n, c.first, c.second);
}
}
} else {
R.add(n);
for (const auto& c : G.destinations(n)) {
if (!left(c.first)) {
R.add(n, c.first, c.second);
}
}
}
}
}
//===========================================================
//===========================================================
// subgraph(G, S)
//===========================================================
//===========================================================
/**
* @brief extract a subgraph of G according to a std::set of nodes S.
*
* @tparam N the type of nodes
* @param G the input graph
* @param S the set of nodes to keep with their dependencies
* @return the resulting subgraph
*/
template <typename N>
digraph<N> subgraph(const digraph<N>& G, const std::set<N>& S)
{
digraph<N> R; // the (R)esulting graph
std::set<N> W{S}; // nodes (W)aiting to be processed
std::set<N> P; // nodes already (P)rocessed
while (!W.empty()) {
std::set<N> M; // (M)ore nodes to process at next iteration
for (auto n : W) {
R.add(n); // add n to the resulting graph
P.insert(n); // mark n as processed
for (const auto& a : G.destinations(n)) {
R.add(n, a.first, a.second); // add its adjacent nodes
if (!P.contains(a.first)) { // is it new ?
M.insert(a.first); // we will have to process it
}
}
}
W = M;
}
return R;
}
//===========================================================
//===========================================================
// cut(g,d) -> g'
// cuts all the destinations of graph g of weight >= d
//===========================================================
//===========================================================
template <typename N>
inline digraph<N> cut(const digraph<N>& G, int dm)
{
digraph<N> R;
for (const auto& n1 : G.nodes()) {
R.add(n1);
for (const auto& c : G.destinations(n1)) {
const auto& n2 = c.first;
R.add(n2);
// remove the connections with weight >= dm
const auto& wg = c.second;
std::set<int> wr;
for (int d : wg) {
if (d < dm) {
wr.insert(d);
}
}
if (!wr.empty()) {
R.add(n1, n2, wr);
}
}
}
return R;
}
//===========================================================
//===========================================================
// chain(g) -> g'
// Keep only the chain destinations, that is destinations
// (n1 -d-> n2) such that dst(n1) == {n2} && src(n2) == {n1}
// If strict is true, only the node part of a chain are kept.
//===========================================================
//===========================================================
template <typename N>
inline digraph<N> chain(const digraph<N>& g, bool strict)
{
const digraph<N> h = reverse(g);
digraph<N> r;
for (const auto& n : g.nodes()) {
if (!strict) {
r.add(n);
}
if (g.destinations(n).size() == 1) {
for (const auto& m : g.destinations(n)) {
if (h.destinations(m.first).size() == 1) {
r.add(n, m.first, m.second);
}
}
}
}
return r;
}
template <typename N>
inline std::vector<N> roots(const digraph<N>& G)
{
std::map<N, int> R;
for (const N& n : G.nodes()) {
for (const auto& c : G.destinations(n)) {
R[c.first]++;
}
}
std::vector<N> V;
for (const N& n : G.nodes()) {
if (R[n] == 0) {
V.push_back(n);
}
}
return V;
}
template <typename N>
inline std::vector<N> leaves(const digraph<N>& G)
{
std::vector<N> L;
for (const N& n : G.nodes()) {
if (G.destinations(n).size() == 0) {
L.push_back(n);
}
}
return L;
}
/**
* @brief compute the critical path of a graph
*
* @param G
* @return std::vector<N>
*/
template <typename N>
inline std::vector<N> criticalpath(const digraph<N>& G, const N& n)
{
std::vector<N> P;
for (const auto& c : G.destinations(n)) {
std::vector<N> Q = criticalpath(G, c.first);
if (Q.size() > P.size()) {
P = Q;
}
}
P.push_back(n);
return P;
}
/**
* @brief interleave two lists
*
* @param list1: (A,B,C,...)
* @param list2: (U,W)
* @return (A,U,B,W,C,...)
*/
template <typename N>
static std::list<N> interleave(std::list<N>& list1, std::list<N>& list2)
{
std::list<N> result;
// Iterators for both lists
auto it1 = list1.begin();
auto it2 = list2.begin();
// Traverse both lists
while (it1 != list1.end() && it2 != list2.end()) {
result.push_back(*it1);
result.push_back(*it2);
++it1;
++it2;
}
// Append remaining elements of list1
while (it1 != list1.end()) {
result.push_back(*it1);
++it1;
}
// Append remaining elements of list2
while (it2 != list2.end()) {
result.push_back(*it2);
++it2;
}
return result;
}
/**
* @brief recursive scheduling of a node of a DAG
*
* @tparam N
* @param G a DAG
* @param n a node of G
* @return std::list<N> scheduling with duplicates
*/
template <typename N>
inline std::list<N> recschedulenode(const digraph<N>& G, const N& n)
{
std::list<N> P;
for (const auto& c : G.destinations(n)) {
std::list<N> Q = recschedulenode(G, c.first);
P = interleave(P, Q);
}
P.push_front(n);
return P;
}
/**
* @brief recursive scheduling of the roots of a DAG
*
* @tparam N
* @param G a DAG
* @return std::list<N> scheduling with duplicates
*/
template <typename N>
inline std::list<N> recschedule(const digraph<N>& G)
{
std::list<N> P;
for (const N& n : roots(G)) {
std::list<N> Q = recschedulenode(G, n);
P = interleave(P, Q);
}
return P;
}
/*******************************************************************************
********************************************************************************
VARIOUS PRINTING std::functionS
*******************************************************************************
******************************************************************************/
//===========================================================
//===========================================================
// file << std::list : print a std::list on a stream
//===========================================================
//===========================================================
template <typename N>
inline std::ostream& operator<<(std::ostream& file, const std::list<N>& L)
{
std::string sep = "";
file << "std::list{";
for (const N& e : L) {
file << sep << e;
sep = ", ";
}
return file << "}";
}
//===========================================================
//===========================================================
// file << std::vector : print a std::vector on a stream
//===========================================================
//===========================================================
template <typename N>
inline std::ostream& operator<<(std::ostream& file, const std::vector<N>& V)
{
std::string sep = "";
file << "std::vector{";
for (const N& e : V) {
file << sep << e;
sep = ", ";
}
return file << "}";
}
//===========================================================
//===========================================================
// file << std::set : print a std::set on a stream
//===========================================================
//===========================================================
template <typename N>
inline std::ostream& operator<<(std::ostream& file, const std::set<N>& S)
{
std::string sep = "";
file << "set{";
for (const N& e : S) {
file << sep << e;
sep = ", ";
}
return file << "}";
}
//===========================================================
//===========================================================
// file << std::pair : print a std::pair on a stream
//===========================================================
//===========================================================
template <typename N, typename M>
inline std::ostream& operator<<(std::ostream& file, const std::pair<N, M>& V)
{
return file << "std::pair{" << V.first << ", " << V.second << "}";
}
//===========================================================
//===========================================================
// dotfile(file, graph) print graph on a stream in .dot format
//===========================================================
//===========================================================
template <typename N>
inline std::ostream& dotfile(std::ostream& file, const digraph<N>& g, bool clusters = false)
{
file << "digraph mygraph {" << '\n';
for (const N& n : g.nodes()) {
std::stringstream sn;
sn << '"' << n << '"';
bool hascnx = false;
for (const auto& c : g.destinations(n)) {
std::stringstream sm;
sm << '"' << c.first << '"';
hascnx = true;
file << "\t" << sn.str() << "->" << sm.str() << " [label=\"" << c.second << "\"];"
<< '\n';
}
if (!hascnx) {
file << "\t" << sn.str() << ";" << '\n';
}
}
if (clusters) {
Tarjan<N> T(g);
int ccount = 0; // cluster count
for (const auto& s : T.partition()) {
file << "\t"
<< "subgraph cluster" << ccount << " { " << '\n';
for (const N& n : s) {
file << "\t\t" << '"' << n << '"' << ";" << '\n';
}
file << "\t"
<< "}" << '\n';
ccount++;
}
}
return file << "}" << '\n';
}
//===========================================================
//===========================================================
// file << graph : print graph on a stream
//===========================================================
//===========================================================
template <typename N>
inline std::ostream& operator<<(std::ostream& file, const digraph<N>& g)
{
std::string sep = "";
file << "Graph {";
for (const N& n : g.nodes()) {
bool hascnx = false;
for (const auto& c : g.destinations(n)) {
hascnx = true;
file << sep << n << '-' << c.second << "->" << (c.first);
sep = ", ";
}
if (!hascnx) {
file << sep << n;
}
sep = ", ";
}
return file << "}";
}
//===========================================================
//===========================================================
//
// topology : high level description of a graph as a vector
// of integers.
//
//===========================================================
//===========================================================
/**
* @brief topology : high level description of a graph.
* Returns a vector of int describing the graph g:
* n: total number of nodes
* a: total number of arrows
* c: total number of cycles
* 0: number of nodes of level 0 (with no dependencies)
* 1: number of nodes of level 1 (with only dependecies at level 0)
* ...
*
* @tparam N type of nodes
* @param g graph we want to analyze
* @return std::vector<int> [n, a, c, l0, l1, ...]
*/
template <typename N>
inline std::vector<int> topology(const digraph<N>& g)
{
std::vector<int> v;
int n = 0;
int a = 0;
for (const N& x : g.nodes()) {
n++;
a += g.destinations(x).size(); // count multi arrows for 1
}
v.push_back(n); // number of nodes
v.push_back(a); // number of arrows
int c = cycles(g);
v.push_back(c);
if (c > 0) {
// we have cycles, compute a dag d first
auto d = graph2dag(g);
for (const auto& l : parallelize(d)) {
v.push_back((int)l.size());
}
} else {
for (const auto& l : parallelize(g)) {
v.push_back((int)l.size());
}
}
return v;
}
|