1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
#include <fstream>
#include "fir_to_fir.hh"
#include "floats.hh"
#include "global.hh"
#include "instructions.hh"
#include "sigtype.hh"
using namespace std;
// Used when inlining functions
stack<BlockInst*> BasicCloneVisitor::fBlockStack;
vector<string> NamedTyped::AttributeMap = {" ", " RESTRICT "};
BasicTyped* IB::genItFloatTyped()
{
return genBasicTyped(itfloat());
}
bool Typed::isBasicTyped()
{
return dynamic_cast<BasicTyped*>(this);
}
bool Typed::isNamedTyped()
{
return dynamic_cast<NamedTyped*>(this);
}
bool Typed::isArrayTyped()
{
return dynamic_cast<ArrayTyped*>(this);
}
bool Typed::isStructTyped()
{
return dynamic_cast<StructTyped*>(this);
}
bool Typed::isVectorTyped()
{
return dynamic_cast<VectorTyped*>(this);
}
DeclareStructTypeInst* isStructType(const string& name)
{
if (gGlobal->gVarTypeTable.find(name) != gGlobal->gVarTypeTable.end()) {
Typed* type = gGlobal->gVarTypeTable[name];
Typed::VarType ext_type = Typed::getTypeFromPtr(type->getType());
// If type is an external Structured type
if (gGlobal->gExternalStructTypes.find(ext_type) != gGlobal->gExternalStructTypes.end()) {
return gGlobal->gExternalStructTypes[ext_type];
}
}
return nullptr;
}
ValueInst* IB::genTypedZero(Typed::VarType type)
{
if (type == Typed::kInt32) {
return genInt32NumInst(0);
} else if (type == Typed::kInt64) {
return genInt64NumInst(0);
} else if (isRealType(type)) {
return genRealNumInst(type, 0.0);
} else if (isFixedPoint(type)) {
return genFixedPointNumInst(0.0);
} else {
// Pointer type
if (gGlobal->gMachinePtrSize == 4) {
return genInt32NumInst(0);
} else {
return genInt64NumInst(0);
}
}
}
// Handle all possible cast at compile time, and use genCastInst only with the 'unknown at compile
// time' kFloatMacro
ValueInst* IB::genRealNumInst(Typed::VarType ctype, double num)
{
if (ctype == Typed::kFloat) {
return new FloatNumInst(float(num));
} else if (ctype == Typed::kFloatMacro) {
if (gGlobal->gFAUSTFLOAT2Internal) {
return genRealNumInst(itfloat(), num);
} else {
return genCastInst(new DoubleNumInst(num), genBasicTyped(Typed::kFloatMacro));
}
} else if (ctype == Typed::kDouble) {
return new DoubleNumInst(num);
} else if (ctype == Typed::kQuad) {
return new DoubleNumInst(num);
} else if (ctype == Typed::kFixedPoint) {
return new FixedPointNumInst(num);
} else {
faustassert(false);
}
return nullptr;
}
ValueInst* IB::genTypedNum(Typed::VarType type, double num)
{
if (type == Typed::kInt32 || type == Typed::kBool) {
return genInt32NumInst(int(num));
} else if (type == Typed::kInt64) {
return genInt64NumInst(int64_t(num));
} else if (isRealType(type)) {
return genRealNumInst(type, num);
} else {
faustassert(false);
}
return nullptr;
}
string Typed::gTypeString[] = {"kInt32",
"kInt32_ptr",
"kInt32_vec",
"kInt32_vec_ptr",
"kInt64",
"kInt64_ptr",
"kInt64_vec",
"kInt64_vec_ptr",
"kBool",
"kBool_ptr",
"kBool_vec",
"kBool_vec_ptr",
"kFloat",
"kFloat_ptr",
"kFloat_ptr_ptr",
"kFloat_vec",
"kFloat_vec_ptr",
"kFloatMacro",
"kFloatMacro_ptr",
"kFloatMacro_ptr_ptr",
"kDouble",
"kDouble_ptr",
"kDouble_ptr_ptr",
"kDouble_vec",
"kDouble_vec_ptr",
"kQuad",
"kQuad_ptr",
"kQuad_ptr_ptr",
"kQuad_vec",
"kQuad_vec_ptr",
"kFixedPoint",
"kFixedPoint_ptr",
"kFixedPoint_ptr_ptr",
"kFixedPoint_vec",
"kFixedPoint_vec_ptr",
"kVoid",
"kVoid_ptr",
"kObj",
"kObj_ptr",
"kSound",
"kSound_ptr",
"kUint_ptr",
"kNoType"};
void BasicTyped::cleanup()
{
gGlobal->gTypeTable.clear();
}
void DeclareVarInst::cleanup()
{
gGlobal->gVarTypeTable.clear();
}
// Variable types are kept in the global name <===> type table
DeclareVarInst::DeclareVarInst(Address* address, Typed* type, ValueInst* value)
: fAddress(address), fType(type), fValue(value)
{
if (gGlobal->gVarTypeTable.find(fAddress->getName()) == gGlobal->gVarTypeTable.end()) {
gGlobal->gVarTypeTable[fAddress->getName()] = type;
} else if (gGlobal->gVarTypeTable[fAddress->getName()] != type) {
// If named type, check their name and internal type
NamedTyped* name_t1 =
dynamic_cast<NamedTyped*>(gGlobal->gVarTypeTable[fAddress->getName()]);
NamedTyped* name_t2 = dynamic_cast<NamedTyped*>(type);
if (name_t1 && name_t2) {
faustassert(name_t1->fName == name_t2->fName && name_t1->fType == name_t2->fType);
} else {
// If array type, check their size and internal type
ArrayTyped* array_t1 =
dynamic_cast<ArrayTyped*>(gGlobal->gVarTypeTable[fAddress->getName()]);
ArrayTyped* array_t2 = dynamic_cast<ArrayTyped*>(type);
if (array_t1 && array_t2) {
// Arrays have the same string representation
bool same_type = array_t1->fType->toString() == array_t2->fType->toString();
// Or not but one of them is actually a pointer
bool compatible_type = (array_t1->fSize != array_t2->fSize) &&
array_t1->fType == array_t2->fType &&
(array_t1->fSize == 0 || array_t2->fSize == 0);
faustassert(same_type || compatible_type);
// If fixed-point, check the string representations
} else if (dynamic_cast<FixedTyped*>(gGlobal->gVarTypeTable[fAddress->getName()])) {
faustassert(gGlobal->gVarTypeTable[fAddress->getName()]->toString() ==
type->toString());
} else {
dump2FIR(address);
dump2FIR(type);
faustassert(false);
}
}
}
}
// A list of channels variables also kept in the global name <===> type table (use in Rust and Julia
// backends)
DeclareBufferIterators::DeclareBufferIterators(const string& name1, const string& name2,
int channels, Typed* type, bool mut, bool chunk)
: fBufferName1(name1),
fBufferName2(name2),
fChannels(channels),
fType(type),
fMutable(mut),
fChunk(chunk)
{
for (int i = 0; i < channels; i++) {
string chan_name = name1 + std::to_string(i);
auto contains = gGlobal->gVarTypeTable.find(chan_name);
if (contains == gGlobal->gVarTypeTable.end()) {
gGlobal->gVarTypeTable[chan_name] = type;
} else {
faustassert(contains->second == type);
}
}
}
// Tools for types
Typed::VarType convert2FIRType(int type)
{
return (type == kInt) ? Typed::kInt32 : itfloat();
}
BasicTyped* IB::genBasicTyped(Typed::VarType type)
{
return gGlobal->genBasicTyped(type);
}
int BasicTyped::getSizeBytes() const
{
faustassert(gGlobal->gTypeSizeMap.find(fType) != gGlobal->gTypeSizeMap.end());
return gGlobal->gTypeSizeMap[fType];
}
int FunTyped::getSizeBytes() const
{
return gGlobal->gTypeSizeMap[Typed::kVoid_ptr];
}
int ArrayTyped::getSizeBytes() const
{
if (fSize == 0) {
// Array of zero size are treated as pointer in the corresponding type
faustassert(gGlobal->gTypeSizeMap.find(getType()) != gGlobal->gTypeSizeMap.end());
return gGlobal->gTypeSizeMap[getType()];
} else {
return fType->getSizeBytes() * fSize;
}
}
// Function types (return type) are kept in the global name <===> type table
DeclareFunInst::DeclareFunInst(const string& name, FunTyped* type, BlockInst* code)
: fName(name), fType(type), fCode(code)
{
if (gGlobal->gVarTypeTable.find(name) == gGlobal->gVarTypeTable.end()) {
gGlobal->gVarTypeTable[name] = type;
} else {
FunTyped* fun_type = static_cast<FunTyped*>(gGlobal->gVarTypeTable[name]);
// If same result type
if (fun_type->getTyped() == type->getTyped()) {
if ((gGlobal->gOutputLang == "llvm") && (fun_type->toString() != type->toString())) {
stringstream str;
str << "ERROR : foreign function '" << name
<< "' conflicts with another (possibly compiler internally defined) function "
"with a different "
"prototype\n";
throw faustexception(str.str());
}
} else {
stringstream str;
str << "ERROR : foreign function '" << name
<< "' conflicts with another (possibly compiler internally defined) function with "
"a different return "
"type\n";
throw faustexception(str.str());
}
}
}
// Function argument variable types are kept in the global num <===> type table
NamedTyped* IB::genNamedTyped(const string& name, Typed* type)
{
if (gGlobal->gVarTypeTable.find(name) == gGlobal->gVarTypeTable.end()) {
// cout << "genNamedTyped " << name << " " <<
// Typed::gTypeString[type->getType()] << endl;
gGlobal->gVarTypeTable[name] = type;
}
return new NamedTyped(name, type);
}
// Function argument variable types are kept in the global num <===> type table
NamedTyped* IB::genNamedTyped(const string& name, Typed::VarType type)
{
return genNamedTyped(name, genBasicTyped(type));
}
// Casting
ValueInst* IB::genCastRealInst(ValueInst* inst)
{
return genCastInst(inst, genItFloatTyped());
}
ValueInst* IB::genCastFloatMacroInst(ValueInst* inst)
{
return genCastInst(inst, genFloatMacroTyped());
}
ValueInst* IB::genCastInt32Inst(ValueInst* inst)
{
return genCastInst(inst, genInt32Typed());
}
// BasicTyped are not cloned, but actually point on the same underlying type
Typed* BasicCloneVisitor::visit(BasicTyped* typed)
{
return gGlobal->gTypeTable[typed->fType];
}
bool BlockInst::hasReturn() const
{
list<StatementInst*>::const_iterator it = fCode.end();
it--;
return dynamic_cast<RetInst*>(*it);
}
// Return the block value (if is has one) and remove it from the block
ValueInst* BlockInst::getReturnValue()
{
list<StatementInst*>::const_iterator it = fCode.end();
it--;
RetInst* ret = dynamic_cast<RetInst*>(*it);
if (ret) {
fCode.pop_back();
return ret->fResult;
} else {
return IB::genNullValueInst();
}
}
struct StoreVarInst* DeclareVarInst::store(ValueInst* exp)
{
return IB::genStoreVarInst(fAddress, exp);
}
struct LoadVarInst* DeclareVarInst::load()
{
return IB::genLoadVarInst(fAddress);
}
bool ControlInst::hasCondition(ValueInst* cond)
{
// Compare string representation of both conditions
stringstream res1;
stringstream res2;
dump2FIR(fCond, res1, false);
dump2FIR(cond, res2, false);
return (res1.str() == res2.str());
}
SimpleForLoopInst::SimpleForLoopInst(const string& name, ValueInst* upperBound,
ValueInst* lowerBound, bool reverse, BlockInst* code)
: fUpperBound(upperBound), fLowerBound(lowerBound), fName(name), fReverse(reverse), fCode(code)
{
// Define the loop variable in order to have it correctly typed when checking in FIRChecker
fInit = IB::genDecLoopVar(name, IB::genInt32Typed(), IB::genInt32NumInst(0));
}
// Function calls
DeclareFunInst* IB::genVoidFunction(const string& name, BlockInst* code)
{
Names args;
FunTyped* fun_type = genFunTyped(args, genVoidTyped());
return genDeclareFunInst(name, fun_type, code);
}
DeclareFunInst* IB::genVoidFunction(const string& name, Names& args, BlockInst* code,
bool isvirtual)
{
FunTyped* fun_type =
genFunTyped(args, genVoidTyped(), (isvirtual) ? FunTyped::kVirtual : FunTyped::kDefault);
return genDeclareFunInst(name, fun_type, code);
}
DeclareFunInst* IB::genFunction0(const string& name, Typed::VarType res, BlockInst* code)
{
Names args;
FunTyped* fun_type = IB::genFunTyped(args, genBasicTyped(res));
return genDeclareFunInst(name, fun_type, code);
}
DeclareFunInst* IB::genFunction1(const string& name, Typed::VarType res, const string& arg1,
Typed::VarType arg1_ty, BlockInst* code)
{
Names args;
args.push_back(genNamedTyped(arg1, arg1_ty));
FunTyped* fun_type = genFunTyped(args, IB::genBasicTyped(res));
return genDeclareFunInst(name, fun_type, code);
}
DeclareFunInst* IB::genFunction2(const string& name, Typed::VarType res, const string& arg1,
Typed::VarType arg1_ty, const string& arg2, Typed::VarType arg2_ty,
BlockInst* code)
{
Names args;
args.push_back(genNamedTyped(arg1, arg1_ty));
args.push_back(genNamedTyped(arg2, arg2_ty));
FunTyped* fun_type = genFunTyped(args, IB::genBasicTyped(res));
return genDeclareFunInst(name, fun_type, code);
}
DeclareFunInst* IB::genFunction3(const string& name, Typed::VarType res, const string& arg1,
Typed::VarType arg1_ty, const string& arg2, Typed::VarType arg2_ty,
const string& arg3, Typed::VarType arg3_ty, BlockInst* code)
{
Names args;
args.push_back(genNamedTyped(arg1, arg1_ty));
args.push_back(genNamedTyped(arg2, arg2_ty));
args.push_back(genNamedTyped(arg3, arg3_ty));
FunTyped* fun_type = genFunTyped(args, genBasicTyped(res));
return genDeclareFunInst(name, fun_type, code);
}
DeclareFunInst* IB::genFunction4(const string& name, Typed::VarType res, const string& arg1,
Typed::VarType arg1_ty, const string& arg2, Typed::VarType arg2_ty,
const string& arg3, Typed::VarType arg3_ty, const string& arg4,
Typed::VarType arg4_ty, BlockInst* code)
{
Names args;
args.push_back(genNamedTyped(arg1, arg1_ty));
args.push_back(genNamedTyped(arg2, arg2_ty));
args.push_back(genNamedTyped(arg3, arg3_ty));
args.push_back(genNamedTyped(arg4, arg4_ty));
FunTyped* fun_type = genFunTyped(args, genBasicTyped(res));
return genDeclareFunInst(name, fun_type, code);
}
DeclareFunInst* IB::genFunction5(const string& name, Typed::VarType res, const string& arg1,
Typed::VarType arg1_ty, const string& arg2, Typed::VarType arg2_ty,
const string& arg3, Typed::VarType arg3_ty, const string& arg4,
Typed::VarType arg4_ty, const string& arg5, Typed::VarType arg5_ty,
BlockInst* code)
{
Names args;
args.push_back(genNamedTyped(arg1, arg1_ty));
args.push_back(genNamedTyped(arg2, arg2_ty));
args.push_back(genNamedTyped(arg3, arg3_ty));
args.push_back(genNamedTyped(arg4, arg4_ty));
args.push_back(genNamedTyped(arg5, arg5_ty));
FunTyped* fun_type = genFunTyped(args, genBasicTyped(res));
return genDeclareFunInst(name, fun_type, code);
}
DeclareFunInst* IB::genFunction6(const string& name, Typed::VarType res, const string& arg1,
Typed::VarType arg1_ty, const string& arg2, Typed::VarType arg2_ty,
const string& arg3, Typed::VarType arg3_ty, const string& arg4,
Typed::VarType arg4_ty, const string& arg5, Typed::VarType arg5_ty,
const string& arg6, Typed::VarType arg6_ty, BlockInst* code)
{
Names args;
args.push_back(genNamedTyped(arg1, arg1_ty));
args.push_back(genNamedTyped(arg2, arg2_ty));
args.push_back(genNamedTyped(arg3, arg3_ty));
args.push_back(genNamedTyped(arg4, arg4_ty));
args.push_back(genNamedTyped(arg5, arg5_ty));
args.push_back(genNamedTyped(arg6, arg6_ty));
FunTyped* fun_type = genFunTyped(args, genBasicTyped(res));
return genDeclareFunInst(name, fun_type, code);
}
bool LoadVarInst::isSimpleValue() const
{
NamedAddress* named = dynamic_cast<NamedAddress*>(fAddress);
IndexedAddress* indexed = dynamic_cast<IndexedAddress*>(fAddress);
return named || (indexed && isInt32Num(indexed->getIndex()));
}
void ScalVecDispatcherVisitor::Dispatch2Visitor(ValueInst* inst)
{
cout << "Dispatch2Visitor %d\n";
fScalarVisitor->visit(inst);
/*
if (inst->fSize == 1) {
fScalarVisitor->visit(inst);
} else {
fVectorVisitor->visit(inst);
}
*/
}
// Patching the DSP struct declare instructions used with "Rec/Vec..." arrays
// to use the iZone/fZone model
DeclareVarInst* IB::genDecStructVar(const string& vname, Typed* type, ValueInst* exp)
{
if (gGlobal->gMemoryManager >= 1) {
if ((startWith(vname, "iRec") || startWith(vname, "iVec") || startWith(vname, "iYec") ||
startWith(vname, "iZec") || startWith(vname, "itbl")) &&
dynamic_cast<ArrayTyped*>(type)) {
// The "iRec/iVec..." array has a base index in the iZone array, to be added to the
// actual index
return gGlobal->gIntZone->declare(vname, type, exp);
} else if ((startWith(vname, "fRec") || startWith(vname, "fVec") ||
startWith(vname, "fYec") || startWith(vname, "fZec") ||
startWith(vname, "ftbl")) &&
dynamic_cast<ArrayTyped*>(type)) {
// The "fRec/fVec..." array has a base index in the fZone array, to be added to the
// actual index
return gGlobal->gRealZone->declare(vname, type, exp);
}
}
return genDeclareVarInst(genNamedAddress(vname, Address::kStruct), type, exp);
}
// Patching the static declare instructions used with "itbl/ftbl" arrays and waveform
// to use the iZone/fZone model
DeclareVarInst* IB::genDecStaticStructVar(const string& vname, Typed* type, ValueInst* exp)
{
if (gGlobal->gMemoryManager >= 1) {
if (startWith(vname, "i")) {
faustassert(dynamic_cast<ArrayTyped*>(type));
return gGlobal->gIntZone->declare(vname, type, exp, true);
} else if (startWith(vname, "f")) {
faustassert(dynamic_cast<ArrayTyped*>(type));
return gGlobal->gRealZone->declare(vname, type, exp, true);
}
}
return genDeclareVarInst(genNamedAddress(vname, Address::kStaticStruct), type, exp);
}
//-----------------------
// Coding Types as trees
//-----------------------
// // 09/12/11 : HACK
/*
static Sym TYPEINT = symbol("TypeInt");
Tree typeInt() { return tree(TYPEINT); }
bool isTypeInt(Tree t) { return isTree(t, TYPEINT); }
static Sym TYPEFLOAT = symbol ("TypeFloat");
Tree typeFloat() { return tree(TYPEFLOAT); }
bool isTypeFloat(Tree t) { return isTree(t, TYPEFLOAT); }
static Sym TYPEARRAY = symbol("TypeArray");
Tree typeArray(int n, Tree t) { return tree(TYPEARRAY, tree(n), t); }
bool isTypeArray(Tree t, int* n, Tree& u) { Tree x; return isTree(t, TYPEARRAY, x, u) &&
isInt(x->node(), n); }
static property<DeclareTypeInst* > gFirTypeProperty;
map<string, int> IB::fIDCounters;
static Tree signalTypeToSharedType(AudioType* type)
{
if (isSimpleType(type)) {
if (type->nature() == kInt32) {
return typeInt();
} else if (type->nature() == kReal) {
return typeFloat();
} else {
faustassert(false);
}
} else if (FaustVectorType* vec = isVectorType(type)) {
return typeArray(vec->size(), signalTypeToSharedType(vec->dereferenceType()));
} else {
faustassert(false);
}
}
DeclareTypeInst* IB::genType(AudioType* type)
{
Tree shared_type = signalTypeToSharedType(type);
DeclareTypeInst* dec_type;
if (gFirTypeProperty.get(shared_type, dec_type)) {
return dec_type;
} else {
if (isSimpleType(type)) {
if (type->nature() == kInt32) {
printf("FaustVectorType intType \n");
dec_type = genDeclareTypeInst(IB::genInt32Typed());
} else if (type->nature() == kReal) {
printf("FaustVectorType floatType \n");
dec_type = genDeclareTypeInst(IB::genFloatTyped());
} else {
faustassert(false);
}
} else if (FaustVectorType* vec = isVectorType(type)) {
printf("FaustVectorType size %d\n", vec->size());
DeclareTypeInst* sub_type = genType(vec->dereferenceType());
dec_type = genDeclareTypeInst(
genStructTyped(getFreshID("vecType"),
IB::genArrayTyped(sub_type->fType, vec->size())));
} else {
faustassert(false);
}
}
gFirTypeProperty.set(shared_type, dec_type);
return dec_type;
}
static Typed* sharedTypeToFirType(Tree t)
{
int size;
Tree subtree;
if (isTypeInt(t)) {
printf("sharedTypeToFirType isTypeInt\n");
return IB::genInt32Typed();
} else if (isTypeFloat(t)) {
printf("sharedTypeToFirType isTypeFloat\n");
return IB::genFloatTyped();
} else if (isTypeArray(t, &size, subtree)) {
printf("sharedTypeToFirType isTypeArray size %d\n", size);
return IB::genArrayTyped(sharedTypeToFirType(subtree), size);
} else {
faustassert(false);
return nullptr;
}
}
DeclareTypeInst* IB::genType(AudioType* type)
{
Tree shared_type = signalTypeToSharedType(type);
DeclareTypeInst* dec_type;
if (gFirTypeProperty.get(shared_type, dec_type)) {
return dec_type;
} else {
DeclareTypeInst* dec_type
= genDeclareTypeInst(getFreshID("vecType"), sharedTypeToFirType(shared_type));
gFirTypeProperty.set(shared_type, dec_type);
return dec_type;
}
}
*/
|