File: check.cpp

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (644 lines) | stat: -rw-r--r-- 23,379 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
/* Copyright 2023 Yann ORLAREY
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <climits>
#include <iostream>
#include <random>
#include <set>
#include <sstream>
#include <string>

#include "check.hh"
#include "interval_algebra.hh"
#include "precision_utils.hh"

/**
 * @brief check we have the expected interval
 *
 * @param expected interval as a string
 * @param exp interval to test
 */
void check(const std::string& expected, const itv::interval& exp)
{
    std::stringstream ss;
    ss << exp;
    if (ss.str().compare(expected) == 0) {
        std::cout << "\033[32m"
                  << "OK: " << expected << "\033[0m" << std::endl;
    } else {
        std::cout << "\033[31m"
                  << "ERR:  We got " << ss.str() << " instead of " << expected << "\033[0m"
                  << std::endl;
    }
}

/**
 * @brief check that an interval result is the expected one
 *
 * @param testname
 * @param exp
 * @param res
 */
void check(const std::string& testname, const itv::interval& exp, const itv::interval& res)
{
    if (exp == res) {
        std::cout << "\033[32m"
                  << "OK: " << testname << " " << exp << " = " << res << "\033[0m" << std::endl;
        if (exp.lsb() != res.lsb()) {
            std::cout << "\033[33m"
                      << "\t But precisions differ by " << exp.lsb() - res.lsb() << "\033[0m"
                      << std::endl;
        }
    } else {
        std::cout << "\033[31m"
                  << "ERR:" << testname << " FAILED. We got " << exp << " instead of " << res
                  << "\033[0m" << std::endl;
    }
}

/**
 * @brief check that a boolean result is the expected one
 *
 * @param testname
 * @param exp
 * @param res
 */
void check(const std::string& testname, bool exp, bool res)
{
    if (exp == res) {
        std::cout << "\033[32m"
                  << "OK: " << testname << "\033[0m" << std::endl;
    } else {
        std::cout << "\033[31m"
                  << "ERR:" << testname << " FAILED. We got " << exp << " instead of " << res
                  << "\033[0m" << std::endl;
    }
}

/**
 * @brief Approximate the resulting interval of a function
 *
 * @param N the number of iterations
 * @param f the function to test
 * @param x the interval of its first argument
 * @param y the interval of its second argument
 * @return interval the interval of the results
 */
itv::interval testfun(int N, bfun f, const itv::interval& x, const itv::interval& y)
{
    std::random_device rd;  // used to generate a random seed, based on some hardware randomness
    std::default_random_engine     generator(rd());
    std::uniform_real_distribution rx(x.lo(), x.hi());
    std::uniform_real_distribution ry(y.lo(), y.hi());

    double a = f(x.lo(), y.lo());
    double b = f(x.lo(), y.hi());
    double c = f(x.hi(), y.lo());
    double d = f(x.hi(), y.hi());

    double l = itv::min4(a, b, c, d);
    double h = itv::max4(a, b, c, d);

    for (int i = 0; i < N; i++) {
        double u = rx(generator);
        double v = ry(generator);
        double r = f(u, v);
        if (r < l) {
            l = r;
        }
        if (r > h) {
            h = r;
        }
    }

    return {l, h};
}

/**
 * @brief analyze the Mod function, print the simulated and computed resulting interval.
 * The two should be close enough.
 *
 * @param x first argument interval
 * @param y second argument interval
 */
void analyzemod(itv::interval x, itv::interval y)
{
    itv::interval_algebra A;
    std::cout << "simulated fmod(" << x << "," << y << ") = " << testfun(10000, fmod, x, y)
              << std::endl;
    std::cout << "computed  fmod(" << x << "," << y << ") = " << A.Mod(x, y) << std::endl;
    std::cout << std::endl;
}

/**
 * @brief Compute numerically the output interval of a function
 *
 * @param E number of intervals/experiments
 * @param M number of measurements used to estimate the resulting interval
 * @param title name of the tested function
 * @param D maximal interval for the argument
 * @param f the numerical function of reference
 */
void analyzeUnaryFunction(int E, int M, const char* title, const itv::interval& D, ufun f)
{
    std::random_device R;  // used to generate a random seed, based on some hardware randomness
    std::default_random_engine     generator(R());
    std::uniform_real_distribution rd(D.lo(), D.hi());

    std::cout << "Analysis of " << title << " in domain " << D << std::endl;

    for (int e = 0; e < E; e++) {  // E experiments

        // X: random input interval X < I
        double        a = rd(generator);
        double        b = rd(generator);
        itv::interval X(std::min(a, b), std::max(a, b));

        // [ylo,yhi] initial f(X) interval
        double t0 = f(X.lo());
        double t1 = f(X.hi());
        double y0 = std::min(t0, t1);
        double y1 = std::max(t0, t1);

        // random values in X
        std::uniform_real_distribution rx(X.lo(), X.hi());

        for (int m = 0; m < M; m++) {  // M measurements
            double y = f(rx(generator));
            if (y < y0) {
                y0 = y;
            }
            if (y > y1) {
                y1 = y;
            }
        }
        itv::interval Y(y0, y1);

        std::cout << e << ": " << title << "(" << X << ") = " << Y << std::endl;
    }
    std::cout << std::endl;
}

/**
 * @brief Check the unary interval function gives a good approximation of the numerical function
 *
 * @param E number of intervals/experiments
 * @param M number of measurements used to estimate the resulting interval
 * @param title name of the tested function
 * @param D maximal interval for the argument
 * @param f the numerical function of reference
 * @param mp the interval method corresponding to f
 */
void analyzeUnaryMethod(int E, int M, const char* title, const itv::interval& D, ufun f, umth mp)
{
    std::random_device R;  // used to generate a random seed, based on some hardware randomness
    std::default_random_engine     generator(R());
    std::uniform_real_distribution rd(D.lo(), D.hi());
    itv::interval_algebra          A;

    std::cout << "Analysis of " << title << " in domain " << D << " (u = " << pow(2, D.lsb()) << ")"
              << std::endl;

    for (int e = 0; e < E; e++) {  // E experiments

        // X: random input interval X < I
        double        a = truncate(rd(generator), D.lsb());
        double        b = truncate(rd(generator), D.lsb());
        itv::interval X(std::min(a, b), std::max(a, b), D.lsb());

        // boundaries of the resulting interval
        double y0 = HUGE_VAL;   // std::min(t0, t1);
        double y1 = -HUGE_VAL;  // std::max(t0, t1);

        // precision of the resulting interval
        int lsb = INT_MAX;

        // random values in X
        std::uniform_real_distribution rx(X.lo(), X.hi());

        // std::vector<double> measurements;
        std::set<double> measurements;

        // the loop has almost no chance of drawing X.hi(): we manually add it
        double sample = X.hi();  // not truncated since morally the interval boundaries should
                                 // already have the right precision
        double y = f(sample);
        // y = truncate(y, -30);

        measurements.insert(y);

        if (!std::isnan(static_cast<double>(y))) {
            if (y < y0) {
                y0 = y;
            }
            if (y > y1) {
                y1 = y;
            }
        }

        for (int m = 0; m < M; m++) {                         // M measurements
            double presample = rx(generator);                 // non-truncated sample
            sample           = truncate(presample, D.lsb());  // truncated sample
            double pre_y     = f(presample);
            y                = f(sample);
            // y      = truncate(y, -30); // workaround to avoid artefacts in trigonometric
            // functions

            measurements.insert(y);

            // interval bounds
            if (!std::isnan(pre_y)) {
                if (pre_y < y0) {
                    y0 = pre_y;
                }
                if (pre_y > y1) {
                    y1 = pre_y;
                }
            }
        }

        double meas = *(measurements.begin());

        for (auto it = std::next(measurements.begin()); it != measurements.end(); ++it) {
            double next = *it;
            double l    = log2(next - meas);
            if (l < lsb) {
                lsb = floor(l);
            }
            meas = next;
        }

        itv::interval Y(y0, y1, lsb);
        if (y0 > y1) {
            Y = itv::empty();  // if we didn't manage to draw any samples
        }
        itv::interval Z = (A.*mp)(X);

        if ((Z >= Y) && (Z.lsb() <= Y.lsb())) {
            double precision = (Z.size() == 0) ? 1 : Y.size() / Z.size();
            std::cout << "\033[32m"
                      << "OK    " << e << ": " << title << "(" << X << ") = \n"
                      << Z << "(c)\t >= \t" << Y << "(m)\t (precision " << precision
                      << ", LSB diff = " << Y.lsb() - Z.lsb() << ")"
                      << "\033[0m" << std::endl;
        } else {
            std::cout << "\033[31m"
                      << "ERROR " << e << ": " << title << "(" << X << ") = \n"
                      << Z << "(c)\t INSTEAD OF \t" << Y
                      << "(m), \t LSB diff = " << Y.lsb() - Z.lsb() << "\033[0m" << std::endl;
        }
        std::cout << std::endl;
    }
    std::cout << std::endl << std::endl;
}

/**
 * @brief Check the binary interval function gives a good approximation of the numerical function.
 *
 * @param E number of intervals/experiments
 * @param M number of measurements used to estimate the resulting interval
 * @param title, name of the tested function
 * @param Dx maximal interval for x
 * @param Dy maximal interval for y
 * @param f the numerical function of reference
 * @param bm the interval method corresponding to f
 */
void analyzeBinaryMethod(int E, int M, const char* title, const itv::interval& Dx,
                         const itv::interval& Dy, bfun f, bmth bm)
{
    std::random_device R;  // used to generate a random seed, based on some hardware randomness
    std::default_random_engine     generator(R());
    std::uniform_real_distribution rdx(Dx.lo(), Dx.hi());
    std::uniform_real_distribution rdy(Dy.lo(), Dy.hi());
    itv::interval_algebra          A;

    std::cout << "Analysis of " << title << " in domains " << Dx << " x " << Dy << std::endl;

    for (int e = 0; e < E; e++) {  // for each experiment

        // store output values in order to measure the output precision
        std::set<double> measurements;
        if ((Dx.lsb() < 0) || (Dy.lsb() < 0)) {  // if we're not doing an integer operation

            // X: random input interval X < Dx
            double        x0 = truncate(rdx(generator), Dx.lsb());
            double        x1 = truncate(rdx(generator), Dx.lsb());
            itv::interval X(std::min(x0, x1), std::max(x0, x1), Dx.lsb());

            // Y: random input interval Y < Dy
            double        y0 = truncate(rdy(generator), Dy.lsb());
            double        y1 = truncate(rdy(generator), Dy.lsb());
            itv::interval Y(std::min(y0, y1), std::max(y0, y1), Dy.lsb());

            // boundaries of the resulting interval Z
            double zlo = HUGE_VAL;   // std::min(t0, t1);
            double zhi = -HUGE_VAL;  // std::max(t0, t1);

            // precision of the resulting interval
            int lsb = INT_MAX;

            // random values in X
            std::uniform_real_distribution rvx(X.lo(), X.hi());
            std::uniform_real_distribution rvy(Y.lo(), Y.hi());

            // draw the upper bounds manually
            double z = f(X.hi(),
                         Y.hi());  // no need to truncate: interval boundaries are already truncated
            measurements.insert(z);

            if (!std::isnan(z)) {
                if (z < zlo) {
                    zlo = z;
                }
                if (z > zhi) {
                    zhi = z;
                }
            }

            // measure the interval Z using the numerical function f
            for (int m = 0; m < M; m++) {  // M measurements
                z = f(truncate(rvx(generator), Dx.lsb()), truncate(rvy(generator), Dy.lsb()));
                measurements.insert(z);
                if (!std::isnan(z)) {
                    if (z < zlo) {
                        zlo = z;
                    }
                    if (z > zhi) {
                        zhi = z;
                    }
                }
            }

            double meas = *(measurements.begin());

            for (auto it = std::next(measurements.begin()); it != measurements.end(); ++it) {
                double next = *it;
                double l    = log2(next - meas);
                if (l < lsb) {
                    lsb = floor(l);
                }
                meas = next;
            }

            itv::interval Zm(zlo, zhi, lsb);  // the measured Z
            if (zlo > zhi) {
                Zm = itv::empty();  // if we didn't manage to draw any samples
            }
            itv::interval Zc        = (A.*bm)(X, Y);  // the computed Z
            double        precision = (Zm.size() == Zc.size()) ? 1 : Zm.size() / Zc.size();

            if ((Zc >= Zm) && (Zc.lsb() <= Zm.lsb())) {
                std::string color = "\033[32m";
                if ((precision < 0.8) || (Zm.lsb() - Zc.lsb() >= 10)) {
                    color = "\033[36m";  // cyan instead of green if approximation is technically
                                         // correct but of poor quality
                }
                std::cout << color << "OK    " << e << ": " << title << "(" << X << ",\t" << Y
                          << ")\n =c=> " << Zc << "(c) >= " << Zm << "(m)"
                          << "\t (precision " << precision
                          << "), \t LSB diff = " << Zm.lsb() - Zc.lsb() << "\033[0m" << std::endl;
            } else {
                std::cout << "\033[31m"
                          << "ERROR " << e << ": " << title << "(" << X << ",\t" << Y << ")\n =c=> "
                          << Zc << "(c) != " << Zm << "(m)"
                          << "\t LSB diff = " << Zm.lsb() - Zc.lsb() << "\033[0m" << std::endl;
            }

        } else {  // integer operation

            // std::cout << "Testing integer version of " << title << std::endl;
            // X: random input interval X < Dx
            double        x0 = truncate(rdx(generator), Dx.lsb());
            double        x1 = truncate(rdx(generator), Dx.lsb());
            itv::interval X(std::min(x0, x1), std::max(x0, x1), Dx.lsb());

            // Y: random input interval Y < Dy
            double        y0 = truncate(rdy(generator), Dy.lsb());
            double        y1 = truncate(rdy(generator), Dy.lsb());
            itv::interval Y(std::min(y0, y1), std::max(y0, y1), Dy.lsb());

            // boundaries of the resulting interval Z
            int zlo = INT_MAX;  // std::min(t0, t1);
            int zhi = INT_MIN;  // std::max(t0, t1);

            // precision of the resulting interval
            int lsb = INT_MAX;

            // random values in X and Y
            std::uniform_int_distribution ivx((int)X.lo(), (int)X.hi());
            std::uniform_int_distribution ivy((int)Y.lo(), (int)Y.hi());

            // draw the upper bounds manually
            int z = f(X.hi(),
                      Y.hi());  // no need to truncate: interval boundaries are already truncated
            measurements.insert((double)z);

            if (z < zlo) {
                zlo = z;
            }
            if (z > zhi) {
                zhi = z;
            }

            // measure the interval Z using the numerical function f
            for (int m = 0; m < M; m++) {  // M measurements
                int pre_x = ivx(generator);
                int x     = truncate(pre_x, Dx.lsb());
                int pre_y = ivy(generator);
                int y     = truncate(pre_y, Dy.lsb());
                z         = f(x, y);
                int pre_z = f(pre_x, pre_y);

                measurements.insert(z);

                if (!std::isnan(static_cast<double>(pre_z))) {
                    if (z < zlo) {
                        zlo = pre_z;
                    }
                    if (z > zhi) {
                        zhi = pre_z;
                    }
                }
            }

            double meas = *(measurements.begin());

            for (auto it = std::next(measurements.begin()); it != measurements.end(); ++it) {
                double next = *it;
                double l    = log2(next - meas);
                if (l < lsb) {
                    lsb = floor(l);
                }
                meas = next;
            }

            itv::interval Zm(zlo, zhi, lsb);          // the measured Z
            itv::interval Zc        = (A.*bm)(X, Y);  // the computed Z
            double        precision = (Zm.size() == Zc.size()) ? 1 : Zm.size() / Zc.size();

            if ((Zc >= Zm) && (Zc.lsb() <= Zm.lsb())) {
                std::string color = "\033[32m";
                // cyan instead of green if approximation is technically correct but of poor quality
                if ((precision < 0.8) || (Zm.lsb() - Zc.lsb() >= 10)) {
                    color = "\033[36m";
                }
                std::cout << color << "OK    " << e << ": " << title << "(" << X << ",\t" << Y
                          << ")\n =c=> " << Zc << "(c) >= " << Zm << "(m)"
                          << "\t (precision " << precision
                          << "), \t LSB diff = " << Zm.lsb() - Zc.lsb() << "\033[0m" << std::endl;
            } else {
                std::cout << "\033[31m"
                          << "ERROR " << e << ": " << title << "(" << X << ",\t" << Y << ")\n =c=> "
                          << Zc << "(c) != " << Zm << "(m)"
                          << "\t LSB diff = " << Zm.lsb() - Zc.lsb() << "\033[0m" << std::endl;
            }
        }
    }
    std::cout << std::endl;
}

/**
 * @brief Adjusts the lsb of an input interval to match a target output lsb
 *
 * @param title name of the tested function
 * @param mp the interval method of the studied function
 * @param X the input interval
 * @param l the target lsb for the output
 */
void propagateBackwardsUnaryMethod(const char* title, umth mp, itv::interval& X, int l)
{
    std::cout << "Shaving input " << X << " of " << title << " to achieve an output lsb of " << l
              << std::endl;

    itv::interval_algebra A;
    // itv::interval X = itv::interval(D.lo(), D.hi(), D.lsb());
    itv::interval Z = (A.*mp)(X);

    while (Z.lsb() < l) {  // the lsb of Z is more precise than l
        X = itv::interval(X.lo(), X.hi(), X.lsb() + 1);
        Z = (A.*mp)(X);
        std::cout << X.lsb() << " -> " << Z.lsb() << std::endl;
    }

    if (Z.lsb() > l) {  // if we've overshot the target lsb
        X = itv::interval(X.lo(), X.hi(), X.lsb() - 1);
    }

    std::cout << "Input interval " << X << " is sufficient" << std::endl;
}

/**
 * @brief Adjusts the lsbs of two input intervals to a binary function to match a target output lbs
 *
 * @param title name of the tested function
 * @param bm the interval method of the studied function
 * @param X the first input interval
 * @param Y the second input interval
 * @param l the target lsb for the output
 */
void propagateBackwardsBinaryMethod(const char* title, bmth bm, itv::interval& X, itv::interval& Y,
                                    int l)
{
    std::cout << "Shaving inputs " << X << " and " << Y << " of " << title
              << " to achieve an output lsb of " << l << std::endl;

    itv::interval_algebra A;
    itv::interval         Z = (A.*bm)(X, Y);

    while (Z.lsb() < l) {
        // std::cout << "X = " << X << "; Y = " << Y << std::endl;
        if (X.lsb() < Y.lsb()) {
            X = itv::interval(X.lo(), X.hi(), X.lsb() + 1);
            std::cout << "Shaving interval X = " << X << std::endl;
        } else {
            Y = itv::interval(Y.lo(), Y.hi(), Y.lsb() + 1);
            std::cout << "Shaving interval Y = " << Y << std::endl;
        }
        Z = (A.*bm)(X, Y);
    }

    std::cout << "Input intervals " << X << " and " << Y << " are sufficient" << std::endl;
}

/**
 * @brief Adjusts the lsb of an input iterval to a list of composed functions to match a target
 * output lsb
 *
 * @param titles names of the tested functions, from outermost to innermost
 * @param mps the interval methods of the functions, from outermost to innermost
 * @param X the input interval
 * @param l the target lsb for the output
 */
void propagateBackwardsComposition(std::vector<const char*> titles, std::vector<umth> mps,
                                   itv::interval& X, int l)
{
    if (titles.size() != mps.size()) {
        std::cout << "Incompatible vector sizes" << std::endl;
        return;
    }

    size_t n = titles.size();

    std::cout << "Shaving input " << X << " of ";
    for (const auto* t : titles) {
        std::cout << t << " ○ ";
    }
    std::cout << "\b\b\b";
    std::cout << " to achieve an output lsb of " << l << std::endl << std::endl;

    itv::interval_algebra      A;
    std::vector<itv::interval> intermediate_intervals{
        X};  // should be one element bigger than titles and mps

    for (size_t i = 0; i < n; i++) {
        intermediate_intervals.push_back((A.*(mps[n - i - 1]))(intermediate_intervals[i]));
        std::cout << titles[n - i - 1] << "(" << intermediate_intervals[i]
                  << ") = " << intermediate_intervals[i + 1] << std::endl;
    }

    std::cout << std::endl << "Intermediate intervals before shaving:" << std::endl;

    for (auto Y : intermediate_intervals) {
        std::cout << Y << std::endl;
    }

    std::cout << std::endl;
    int li = l;

    for (size_t i = 0; i < n - 1; i++) {
        propagateBackwardsUnaryMethod(titles[i], mps[i], intermediate_intervals[n - i - 1], li);
        li = intermediate_intervals[n - i - 1].lsb();
        std::cout << std::endl;
    }
    propagateBackwardsUnaryMethod(titles[n - 1], mps[n - 1], X, li);
    // propagateBackwardsUnaryMethod(titles[0], mps[0], X, li);
    // propagateBackwardsUnaryMethod(titles[1], mps[1], X, intermediate_intervals[1].lsb());

    std::cout << std::endl;

    itv::interval Y = X;

    for (size_t i = 0; i < n; i++) {
        std::cout << titles[n - i - 1] << "(" << Y << ") = ";
        Y = (A.*mps[n - i - 1])(Y);
        std::cout << Y << std::endl;
    }

    std::cout << std::endl << "Intermediate intervals after shaving:" << std::endl;

    std::cout << X << std::endl;
    for (auto Y : intermediate_intervals) {
        std::cout << Y << std::endl;
    }
}