File: intervalInv.cpp

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (94 lines) | stat: -rw-r--r-- 3,746 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
/* Copyright 2023 Yann ORLAREY
 *
 * Licensed under the Apache License, Version 2.0 (the "License");
 * you may not use this file except in compliance with the License.
 * You may obtain a copy of the License at
 *
 * http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
#include <algorithm>
#include <functional>
#include <random>

#include "check.hh"
#include "interval_algebra.hh"
#include "interval_def.hh"

namespace itv {
//------------------------------------------------------------------------------------------
// Interval inverse

static double inv(double x)
{
    if (x == 0) {
        return HUGE_VAL;
    }
    return 1 / x;
}

interval interval_algebra::Inv(const interval& x)
{
    if (x.isEmpty()) {
        return empty();
    }

    int    sign = signMaxValAbs(x);
    double v = maxValAbs(x);  // precision is computed at the bound with the highest absolute value

    // if v is infinite, this means that images of interval elements will get closer and closer
    // but since we're writing the fixed-point numbers on at most 31 bits of MSB
    // we can take the max number to be an integer bound
    // and this one will give a finite precision, unlike a floating-point infinity
    if (std::isinf(v)) {
        v = (sign == -1) ? INT_MAX : INT_MIN;
    }

    int precision = exactPrecisionUnary(inv, v, sign * std::pow(2, x.lsb()));
    if ((precision == INT_MIN) || taylor_lsb) {
        precision =
            std::floor(x.lsb() - 2 * std::log2(std::abs(v)));  // 1/(x+u) - 1/x = -u/x^2 + o(u)
    }

    // precision = std::max(precision, -31);

    if ((x.hi() < 0) || (x.lo() >= 0)) {
        return {1.0 / x.hi(), 1.0 / x.lo(), precision};
    }
    if (x.hi() == 0 && x.lo() < 0) {
        return {-HUGE_VAL, 1.0 / x.lo(), precision};
        // normally, we don't divide by 0
        // so the bounds of the image interval are not infinity but 1/ulp
        // return {-pow(2, -x.lsb()), 1.0 / x.lo(), precision};
    }
    if (x.lo() == 0 && x.hi() > 0) {
        return {1 / x.hi(), HUGE_VAL, precision};
        // return {1 / x.hi(), pow(2, -x.lsb()), precision};
    }
    return {-HUGE_VAL, HUGE_VAL, precision};
    // return {-pow(2, -x.lsb()), pow(2, -x.lsb()), precision};
}

void interval_algebra::testInv()
{
    /* check("test algebra Inv", Inv(interval(-16, -4)), interval(-1. / 4., -1. / 16.));
    check("test algebra Inv", Inv(interval(4, 16)), interval(1.0 / 16, 0.25));
    check("test algebra Inv", Inv(interval(0, 10)), interval(0.1, +HUGE_VAL));
    check("test algebra Inv", Inv(interval(-10, 0)), interval(-HUGE_VAL, -0.1));
    check("test algebra Inv", Inv(interval(-20, +20)), interval(-HUGE_VAL, +HUGE_VAL));
    check("test algebra Inv", Inv(interval(0, 0)), interval(+HUGE_VAL, +HUGE_VAL));*/

    analyzeUnaryMethod(10, 2000, "inv", interval(-16, -4, -5), inv, &interval_algebra::Inv);
    analyzeUnaryMethod(10, 2000, "inv", interval(4, 16, -5), inv, &interval_algebra::Inv);
    analyzeUnaryMethod(10, 2000, "inv", interval(0, 10, -5), inv, &interval_algebra::Inv);
    analyzeUnaryMethod(10, 2000, "inv", interval(-10, 0, -5), inv, &interval_algebra::Inv);
    analyzeUnaryMethod(10, 2000, "inv", interval(-20, 20, -5), inv, &interval_algebra::Inv);
    // analyzeUnaryMethod(10, 2000, "inv", interval(0, 0, -5), inv, &interval_algebra::Inv);
    // analyzeUnaryMethod(10, 2000, "inv", interval(-10, 0, -5), inv, &interval_algebra::Inv);
}
}  // namespace itv