1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/* Copyright 2023 Yann ORLAREY
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
#include <algorithm>
#include <cmath>
#include <functional>
#include <iostream>
#include <random>
#include <utility>
#include "check.hh"
#include "interval_algebra.hh"
#include "interval_def.hh"
namespace itv {
// union of two floating point intervals
inline interval operator+(const interval& a, const interval& b)
{
if (a.isEmpty()) {
return b;
}
if (b.isEmpty()) {
return a;
}
return interval{std::min(a.lo(), b.lo()), std::max(a.hi(), b.hi()), std::min(a.lsb(), b.lsb())};
}
// negation of an interval
interval neg(interval x)
{
return interval{-x.hi(), -x.lo(), x.lsb()};
}
// join of two intervals
interval join(interval x, interval y)
{
if (x.isEmpty()) {
return y;
}
if (y.isEmpty()) {
return x;
}
return interval{std::min(x.lo(), y.lo()), std::max(x.hi(), y.hi()), std::min(x.lsb(), y.lsb())};
}
// split an interval into two intervals, negative and positive (or empty)
std::pair<interval, interval> split(interval x)
{
if (x.lo() >= 0) {
return {empty(), x};
}
if (x.hi() < 0) {
return {x, empty()};
}
return {interval{x.lo(), std::nexttoward(0.0, -1.0), x.lsb()}, interval{0.0, x.hi(), x.lsb()}};
}
// split an interval into two intervals, negative and positive (or empty)
std::pair<interval, interval> splitnz(interval x)
{
if (x.lo() >= 0) {
return {empty(), x};
}
if (x.hi() < 0) {
return {x, empty()};
}
return {interval{x.lo(), std::nexttoward(0.0, -1.0), x.lsb()},
interval{std::nexttoward(0.0, 1.0), x.hi(), x.lsb()}};
}
//------------------------------------------------------------------------------------------
// modulo function on intervals based on https://github.com/orlarey/interval-mod
//------------------------------------------------------------------------------------------
/**
* @brief resulting interval of fmod(x,y) for interval x and y
*
* @param x the interval we compute the modulo of
* @param y the divisor
* @return interval the resulting interval
*/
interval positiveFMod(const interval& x, const interval& y)
{
if (x.isEmpty() || y.isEmpty()) {
return empty();
}
int n = int(x.lo() / y.hi());
// std::cout << "n = " << n << std::endl;
int precision = std::min(x.lsb(), y.lsb());
// n == 0 obeys the same rules as the general case
/* if (n == 0) {
// prop: x.lo() < y.hi()
if (y.hi() > x.hi()) {
if (y.lo() > x.hi()) {
// prop: x < y => fmod(x,y) = x
return x;
}
// prop: y.lo() <= x.hi() < y.hi()
return interval{0.0, x.hi(), precision};
}
// prop: x.lo() < y.hi() <= x.hi()
return interval{0.0, nexttoward(y.hi(), 0), precision};
}*/
// prop: n > 0 && y.hi() <= x.lo()
double hi = x.hi() / (n + 1);
if (y.hi() <= hi) {
return interval{0.0, std::nexttoward(y.hi(), 0), precision};
}
// prop: y.hi() > hi
if (y.lo() <= hi) {
return interval{0.0, std::nexttoward(hi, 0), precision};
}
// prop : y.lo() > hi
// in that case, the quotient between x and y is constant and equal
return interval{x.lo() - n * y.hi(), x.hi() - n * y.lo(), precision};
}
// fmod of two signed intervals
interval interval_algebra::Mod(const interval& x, const interval& y)
{
auto [xn, xp] = split(x); // slipts x into a negative and a positive interval
auto [yn, yp] = splitnz(y); // slipts y into a negative and a positive interval (zero excluded)
// compute the 4 possible fmod of the 4 possible combinations of xn, xp, yn, yp
auto xnyn = neg(positiveFMod(neg(xn), neg(yn)));
auto xnyp = neg(positiveFMod(neg(xn), yp));
auto xpyn = positiveFMod(xp, neg(yn));
auto xpyp = positiveFMod(xp, yp);
// Make sure these 4 values are in the resulting interval
auto bb = singleton(std::fmod(x.hi(), y.hi())) + singleton(std::fmod(x.lo(), y.hi())) +
singleton(std::fmod(x.hi(), y.lo())) + singleton(std::fmod(x.lo(), y.lo()));
bb = interval{bb.lo(), bb.hi(), std::min(x.lsb(), y.lsb())};
// combine all the intervals
return bb + xnyn + xnyp + xpyn + xpyp;
}
void interval_algebra::testMod()
{
// check("test algebra Mod", Mod(interval(-100, 100), 1.0), interval(nextafter(-1.0, 0.0),
// nextafter(1.0, 0.0))); check("test algebra Mod", Mod(interval(0, 100), 2), interval(0,
// nextafter(2.0, 0))); check("test algebra Mod", Mod(interval(0, 100), -1.0), interval(0,
// nextafter(1.0, 0)));
/* check("test algebra Mod", Mod(interval(5, 7), interval(4, 4.5)), interval(0.5, 3));
check("test algebra Mod", Mod(interval(5, 7), interval(8, 10)), interval(5, 7));
check("test algebra Mod", Mod(interval(-7, 7), interval(8, 10)), interval(-7, 7));
check("test algebra Mod", Mod(interval(0, 100), interval(7, 7)), interval(0, nextafter(7.0,
0.0)));*/
// analyzeBinaryMethod(10, 10000, "mod", interval(0, 10, -5), interval(0, 10, -5), fmod,
// &interval_algebra::Mod);
analyzeBinaryMethod(10, 10000, "mod", interval(0, 10, 1), interval(0, 10, 0), std::fmod,
&interval_algebra::Mod);
/* analyzeBinaryMethod(10, 10000, "mod", interval(0, 10, 0), interval(0, 10, 0), fmod,
&interval_algebra::Mod); analyzeBinaryMethod(10, 10000, "mod", interval(0, 10, 0), interval(0,
10, -5), fmod, &interval_algebra::Mod);
analyzeBinaryMethod(10, 100000000, "mod", interval(3, 4, -3), interval(1.2, 1.4, -3), fmod,
&interval_algebra::Mod);*/
// analyzeBinaryMethod(10, 10000, "mod", interval(-10, 10, -5), interval(-10, 10, -5), fmod,
// &interval_algebra::Mod);
}
} // namespace itv
|