1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
#include "mterm.hh"
#include "exception.hh"
#include "global.hh"
#include "ppsig.hh"
#include "signals.hh"
#include "xtended.hh"
using namespace std;
typedef map<Tree, int> MP;
mterm::mterm() : fCoef(sigInt(0))
{
}
mterm::mterm(int k) : fCoef(sigInt(k))
{
}
mterm::mterm(double k) : fCoef(sigReal(k))
{
}
mterm::mterm(const mterm& m) : fCoef(m.fCoef), fFactors(m.fFactors)
{
}
/**
* Create a mterm from a tree expression
*/
mterm::mterm(Tree t) : fCoef(sigInt(1))
{
#ifdef TRACE
cerr << "mterm::mterm (Tree t) : " << ppsig(t) << endl;
#endif
*this *= t;
#ifdef TRACE
cerr << "MTERM(" << ppsig(t) << ") -> " << *this << endl;
#endif
}
/**
* true if mterm doesn't represent number 0
*/
bool mterm::isNotZero() const
{
return !isZero(fCoef);
}
/**
* true if mterm is strictly negative
*/
bool mterm::isNegative() const
{
return !isGEZero(fCoef);
}
/**
* Print a mterm in a human readable format
*/
ostream& mterm::print(ostream& dst) const
{
const char* sep = "";
if (!isOne(fCoef) || fFactors.empty()) {
dst << ppsig(fCoef);
sep = " * ";
}
// if (true) { dst << ppsig(fCoef); sep = " * "; }
for (const auto& p : fFactors) {
dst << sep << ppsig(p.first);
if (p.second != 1) {
dst << "**" << p.second;
}
sep = " * ";
}
return dst;
}
/**
* Compute the "complexity" of a mterm, that is the number of
* factors it contains (weighted by the importance of these factors)
*/
int mterm::complexity() const
{
int c = isOne(fCoef) ? 0 : (isMinusOne(fCoef) ? 0 : 1);
for (const auto& p : fFactors) {
c += (1 + getSigOrder(p.first)) * abs(p.second);
}
// cerr << __LINE__ << ":" << __FUNCTION__ << "(" << *this << ") --> " << c << endl;
return c;
}
/**
* Match x^p with p:int
*/
static bool isSigPow(Tree sig, Tree& x, int& n)
{
// cerr << "isSigPow("<< *sig << ')' << endl;
xtended* p = (xtended*)getUserData(sig);
if (p == gGlobal->gPowPrim) {
if (isSigInt(sig->branch(1), &n)) {
x = sig->branch(0);
// cerr << "factor of isSigPow " << *x << endl;
return true;
}
}
return false;
}
/**
* Produce x^p with p:int
*/
static Tree sigPow(Tree x, int p)
{
return tree(gGlobal->gPowPrim->symbol(), x, sigInt(p));
}
/**
* Multiply a mterm by an expression tree. Go down recursively looking
* for multiplications and divisions
*/
const mterm& mterm::operator*=(Tree t)
{
int op, n;
Tree x, y;
faustassert(t);
if (isNum(t)) {
fCoef = mulNums(fCoef, t);
} else if (isSigBinOp(t, &op, x, y) && (op == kMul)) {
*this *= x;
*this *= y;
} else if (isSigBinOp(t, &op, x, y) && (op == kDiv)) {
*this *= x;
*this /= y;
} else {
if (isSigPow(t, x, n)) {
fFactors[x] += n;
} else {
fFactors[t] += 1;
}
}
return *this;
}
/**
* Divide a mterm by an expression tree t. Go down recursively looking
* for multiplications and divisions
*/
const mterm& mterm::operator/=(Tree t)
{
// cerr << "division in place : " << *this << " / " << ppsig(t) << endl;
int op, n;
Tree x, y;
faustassert(t);
if (isNum(t)) {
if (isZero(t)) {
stringstream error;
error << "ERROR : division by 0 in " << *this << " / " << ppsig(t) << endl;
throw faustexception(error.str());
}
fCoef = divExtendedNums(fCoef, t);
} else if (isSigBinOp(t, &op, x, y) && (op == kMul)) {
*this /= x;
*this /= y;
} else if (isSigBinOp(t, &op, x, y) && (op == kDiv)) {
*this /= x;
*this *= y;
} else {
if (isSigPow(t, x, n)) {
fFactors[x] -= n;
} else {
fFactors[t] -= 1;
}
}
return *this;
}
/**
* Replace the content with a copy of m
*/
const mterm& mterm::operator=(const mterm& m)
{
fCoef = m.fCoef;
fFactors = m.fFactors;
return *this;
}
/**
* Clean a mterm by removing x**0 factors
*/
void mterm::cleanup()
{
if (isZero(fCoef)) {
fFactors.clear();
} else {
for (MP::iterator p = fFactors.begin(); p != fFactors.end();) {
if (p->second == 0) {
fFactors.erase(p++);
} else {
p++;
}
}
}
}
/**
* Add in place an mterm. As we want the result to be
* a mterm therefore essentially mterms of same signature can be added
*/
const mterm& mterm::operator+=(const mterm& m)
{
if (isZero(m.fCoef)) {
// nothing to do
} else if (isZero(fCoef)) {
// copy of m
fCoef = m.fCoef;
fFactors = m.fFactors;
} else {
// only add mterms of same signature
faustassert(signatureTree() == m.signatureTree());
fCoef = addNums(fCoef, m.fCoef);
}
cleanup();
return *this;
}
/**
* Substract in place an mterm. As we want the result to be
* a mterm therefore essentially mterms of same signature can be substracted
*/
const mterm& mterm::operator-=(const mterm& m)
{
if (isZero(m.fCoef)) {
// nothing to do
} else if (isZero(fCoef)) {
// minus of m
fCoef = minusNum(m.fCoef);
fFactors = m.fFactors;
} else {
// only add mterms of same signature
faustassert(signatureTree() == m.signatureTree());
fCoef = subNums(fCoef, m.fCoef);
}
cleanup();
return *this;
}
/**
* Multiply a mterm by the content of another mterm
*/
const mterm& mterm::operator*=(const mterm& m)
{
fCoef = mulNums(fCoef, m.fCoef);
for (const auto& p : m.fFactors) {
fFactors[p.first] += p.second;
}
cleanup();
return *this;
}
/**
* Divide a mterm by the content of another mterm
*/
const mterm& mterm::operator/=(const mterm& m)
{
// cerr << "division en place : " << *this << " / " << m << endl;
if (m.fCoef == nullptr) {
stringstream error;
error << "ERROR : division by 0 in " << *this << " / " << m << endl;
throw faustexception(error.str());
}
fCoef = divExtendedNums(fCoef, m.fCoef);
for (const auto& p : m.fFactors) {
fFactors[p.first] -= p.second;
}
cleanup();
return *this;
}
/**
* Multiply two mterms
*/
mterm mterm::operator*(const mterm& m) const
{
mterm r(*this);
r *= m;
return r;
}
/**
* Divide two mterms
*/
mterm mterm::operator/(const mterm& m) const
{
mterm r(*this);
r /= m;
return r;
}
/**
* Return the "common quantity" of two numbers
*/
static int common(int a, int b)
{
if ((a > 0) & (b > 0)) {
return std::min(a, b);
} else if ((a < 0) & (b < 0)) {
return std::max(a, b);
} else {
return 0;
}
}
/**
* Return a mterm that is the greatest common divisor of two mterms
*/
mterm gcd(const mterm& m1, const mterm& m2)
{
// cerr << "GCD of " << m1 << " and " << m2 << endl;
Tree c = (sameMagnitude(m1.fCoef, m2.fCoef))
? m1.fCoef
: tree(1); // common coefficient (real gcd not needed)
mterm R(c);
for (const auto& p1 : m1.fFactors) {
Tree t = p1.first;
MP::const_iterator p2 = m2.fFactors.find(t);
if (p2 != m2.fFactors.end()) {
int v1 = p1.second;
int v2 = p2->second;
int c1 = common(v1, v2);
if (c1 != 0) {
R.fFactors[t] = c1;
}
}
}
// cerr << "GCD of " << m1 << " and " << m2 << " is : " << R << endl;
return R;
}
/**
* We say that a "contains" b if a/b > 0. For example 3 contains 2 and
* -4 contains -2, but 3 doesn't contains -2 and -3 doesn't contains 1
*/
static bool contains(int a, int b)
{
return (b == 0) || (a / b > 0);
}
/**
* Check if M accept N has a divisor. We can say that N is
* a divisor of M if M = N*Q and the complexity is preserved :
* complexity(M) = complexity(N)+complexity(Q)
* x**u has divisor x**v if u >= v
* x**-u has divisor x**-v if -u <= -v
*/
bool mterm::hasDivisor(const mterm& n) const
{
if (n.fFactors.size() == 0) {
// n is a pure number
return sameMagnitude(fCoef, n.fCoef);
}
for (const auto& p1 : n.fFactors) {
// for each factor f**q of m
Tree f = p1.first;
int v = p1.second;
// check that f is also a factor of *this
MP::const_iterator p2 = fFactors.find(f);
if (p2 == fFactors.end()) {
return false;
}
// analyze quantities
int u = p2->second;
if (!contains(u, v)) {
return false;
}
}
// cerr << __LINE__ << ":" << __func__ << *this << " is divisible by " << n << endl;
return true;
}
/**
* Produce the canonical tree corresponding to a mterm
*/
/**
* Build a power term of type f**q -> (((f.f).f)..f) with q>0
*/
static Tree buildPowTerm(Tree f, int q)
{
faustassert(f);
faustassert(q > 0);
if (q > 1) {
return sigPow(f, q);
} else {
return f;
}
}
/**
* Combine R and A doing R = R*A or R = A
*/
static void combineMulLeft(Tree& R, Tree A)
{
if (R && A) {
R = sigMul(R, A);
} else if (A) {
R = A;
} else {
cerr << "ERROR : combineMulLeft\n";
faustassert(false);
}
}
/**
* Combine R and A doing R = R/A or R = A
*/
static void combineDivLeft(Tree& R, Tree A)
{
if (R && A) {
R = sigDiv(R, A);
} else if (A) {
R = sigDiv(tree(1.0f), A);
} else {
cerr << "ERROR : combineDivLeft\n";
faustassert(false);
}
}
/**
* Do M = M * f**q or D = D * f**-q
*/
static void combineMulDiv(Tree& M, Tree& D, Tree f, int q)
{
#ifdef TRACE
cerr << "combineMulDiv (" << M << "/" << D << "*" << ppsig(f) << "**" << q << endl;
#endif
if (f) {
faustassert(q != 0);
if (q > 0) {
combineMulLeft(M, buildPowTerm(f, q));
} else if (q < 0) {
combineMulLeft(D, buildPowTerm(f, -q));
}
}
}
/**
* Returns a normalized (canonical) tree expression of structure :
* ((v1/v2)*(c1/c2))*(s1/s2)
*/
Tree mterm::signatureTree() const
{
return normalizedTree(true);
}
/**
* Returns a normalized (canonical) tree expression of structure :
* ((k*(v1/v2))*(c1/c2))*(s1/s2)
* In signature mode the fCoef factor is ommited
* In negativeMode the sign of the fCoef factor is inverted
*/
Tree mterm::normalizedTree(bool signatureMode, bool negativeMode) const
{
#ifdef TRACE
cout << "normalizedTree " << *this << endl;
#endif
if (fFactors.empty() || isZero(fCoef)) {
// it's a pure number
if (signatureMode) {
return tree(1);
}
if (negativeMode) {
return minusNum(fCoef);
} else {
return fCoef;
}
} else {
// it's not a pure number, it has factors
Tree A[4], B[4];
// group by order
for (int order = 0; order < 4; order++) {
A[order] = 0;
B[order] = 0;
for (const auto& p : fFactors) {
Tree f = p.first; // f = factor
int q = p.second; // q = power of f
if (f && q && getSigOrder(f) == order) {
combineMulDiv(A[order], B[order], f, q);
}
}
}
#if 1
if (A[0] != 0) {
cerr << "A[0] == " << *A[0] << endl;
}
if (B[0] != 0) {
cerr << "B[0] == " << *B[0] << endl;
}
// in principle here zero order is empty because it corresponds to the numerical coef
faustassert(A[0] == nullptr);
faustassert(B[0] == nullptr);
#endif
// we only use a coeficient if it differs from 1 and if we are not in signature mode
if (!(signatureMode || isOne(fCoef))) {
A[0] = (negativeMode) ? minusNum(fCoef) : fCoef;
}
if (signatureMode) {
A[0] = 0;
} else if (negativeMode) {
if (isMinusOne(fCoef)) {
A[0] = 0;
} else {
A[0] = minusNum(fCoef);
}
} else if (isOne(fCoef)) {
A[0] = 0;
} else {
A[0] = fCoef;
}
// combine each order separately : R[i] = A[i]/B[i]
Tree RR = 0;
for (int order = 0; order < 4; order++) {
if (A[order] && B[order]) {
combineMulLeft(RR, sigDiv(A[order], B[order]));
} else if (A[order]) {
combineMulLeft(RR, A[order]);
} else if (B[order]) {
combineDivLeft(RR, B[order]);
}
}
if (RR == nullptr) {
RR = tree(1); // to check *******************
}
faustassert(RR);
#ifdef TRACE
cout << "Normalized Tree of " << *this << " is " << ppsig(RR) << endl;
#endif
return RR;
}
}
|