1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
#include <stdio.h>
#include <map>
#include "global.hh"
#include "ppbox.hh"
#include "ppsig.hh"
#include "sigPromotion.hh"
#include "sigtyperules.hh"
#include "simplify.hh"
#include "timing.hh"
#include "tree.hh"
using namespace std;
// Implementation
static Tree simplifyToNormalFormAux(Tree LS)
{
// Convert deBruijn recursion into symbolic recursion
startTiming("deBruijn2Sym");
Tree L1 = deBruijn2Sym(LS);
endTiming("deBruijn2Sym");
// Annotate L1 with type information
startTiming("L1 typeAnnotation");
typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
endTiming("L1 typeAnnotation");
if (gGlobal->gRangeUI) {
// Generate safe values for range UI items (sliders and nentry)
startTiming("Safe values for range UI items");
L1 = signalUIPromote(L1);
endTiming("Safe values for range UI items");
// Annotate L1 with type information
startTiming("L1 typeAnnotation");
typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
endTiming("L1 typeAnnotation");
}
if (gGlobal->gFreezeUI) {
// Freeze range UI items (sliders and nentry) to their init value
startTiming("Freeze values for range UI items");
L1 = signalUIFreezePromote(L1);
endTiming("Freeze values for range UI items");
// Annotate L1 with type information
startTiming("L1 typeAnnotation");
typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
endTiming("L1 typeAnnotation");
}
if (gGlobal->gFTZMode > 0) {
// Wrap real signals with FTZ
startTiming("FTZ on recursive signals");
L1 = signalFTZPromote(L1);
endTiming("FTZ on recursive signals");
// Annotate L1 with type information
startTiming("L1 typeAnnotation");
typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
endTiming("L1 typeAnnotation");
}
// Auto differentiation
if (gGlobal->gAutoDifferentiate) {
L1 = signalAutoDifferentiate(L1);
typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
}
// Needed before 'simplify' (see sigPromotion.hh)
startTiming("Cast and Promotion");
Tree L2 = signalPromote(L1);
endTiming("Cast and Promotion");
// Simplify by executing every computable operation
startTiming("L2 simplification");
Tree L3 = simplify(L2);
endTiming("L2 simplification");
// Annotate L3 with type information
startTiming("L3 typeAnnotation");
typeAnnotation(L3, gGlobal->gLocalCausalityCheck);
endTiming("L3 typeAnnotation");
startTiming("Cast and Promotion");
Tree L4 = signalPromote(L3);
endTiming("Cast and Promotion");
startTiming("L4 typeAnnotation");
typeAnnotation(L4, gGlobal->gLocalCausalityCheck);
endTiming("L4 typeAnnotation");
// Must be done after simplification so that 'size' signal is properly simplified to a constant
if (gGlobal->gCheckTable) {
// Check and generate safe access to rdtable/rwtable
startTiming("Safe access to rdtable/rwtable");
L4 = signalTablePromote(L4);
endTiming("Safe access to rdtable/rwtable");
// Annotate L4 with type information
startTiming("L4 typeAnnotation");
typeAnnotation(L4, gGlobal->gLocalCausalityCheck);
endTiming("L4 typeAnnotation");
}
if (gGlobal->gCheckIntRange) {
// Check and generate safe float to integer range conversion
startTiming("Safe float to integer conversion");
L4 = signalIntCastPromote(L4);
endTiming("Safe float to integer conversion");
// Annotate L4 with type information
startTiming("L4 typeAnnotation");
typeAnnotation(L4, gGlobal->gLocalCausalityCheck);
endTiming("L4 typeAnnotation");
}
// Check signal tree
startTiming("L4 signalChecker");
SignalChecker checker(L4);
endTiming("L4 signalChecker");
return L4;
}
// Public API
LIBFAUST_API Tree simplifyToNormalForm(Tree sig)
{
if (isList(sig)) {
Tree t2 = sig->getProperty(gGlobal->NORMALFORM);
if (!t2) {
t2 = simplifyToNormalFormAux(sig);
sig->setProperty(gGlobal->NORMALFORM, t2);
}
return t2;
} else {
return simplifyToNormalForm(cons(sig, gGlobal->nil));
}
}
LIBFAUST_API tvec simplifyToNormalForm2(tvec siglist)
{
tvec res;
for (const auto& it : siglist) {
res.push_back(simplifyToNormalForm(it));
}
return res;
}
LIBFAUST_API string printSignal(Tree sig, bool shared, int max_size)
{
// Clear print state
gGlobal->clear();
stringstream str;
if (shared) {
ppsigShared(sig, str, max_size);
} else {
str << ppsig(sig, max_size) << endl;
}
return str.str();
}
LIBFAUST_API string printBox(Tree box, bool shared, int max_size)
{
// Clear print state
gGlobal->clear();
stringstream str;
if (shared) {
boxppShared(box, str);
} else {
str << mBox(box, max_size) << endl;
}
return str.str();
}
|