File: normalform.cpp

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (194 lines) | stat: -rw-r--r-- 6,257 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/************************************************************************
 ************************************************************************
    FAUST compiler
    Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/

#include <stdio.h>
#include <map>

#include "global.hh"
#include "ppbox.hh"
#include "ppsig.hh"
#include "sigPromotion.hh"
#include "sigtyperules.hh"
#include "simplify.hh"
#include "timing.hh"
#include "tree.hh"

using namespace std;

// Implementation
static Tree simplifyToNormalFormAux(Tree LS)
{
    // Convert deBruijn recursion into symbolic recursion
    startTiming("deBruijn2Sym");
    Tree L1 = deBruijn2Sym(LS);
    endTiming("deBruijn2Sym");

    // Annotate L1 with type information
    startTiming("L1 typeAnnotation");
    typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
    endTiming("L1 typeAnnotation");

    if (gGlobal->gRangeUI) {
        // Generate safe values for range UI items (sliders and nentry)
        startTiming("Safe values for range UI items");
        L1 = signalUIPromote(L1);
        endTiming("Safe values for range UI items");

        // Annotate L1 with type information
        startTiming("L1 typeAnnotation");
        typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
        endTiming("L1 typeAnnotation");
    }

    if (gGlobal->gFreezeUI) {
        // Freeze range UI items (sliders and nentry) to their init value
        startTiming("Freeze values for range UI items");
        L1 = signalUIFreezePromote(L1);
        endTiming("Freeze values for range UI items");

        // Annotate L1 with type information
        startTiming("L1 typeAnnotation");
        typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
        endTiming("L1 typeAnnotation");
    }

    if (gGlobal->gFTZMode > 0) {
        // Wrap real signals with FTZ
        startTiming("FTZ on recursive signals");
        L1 = signalFTZPromote(L1);
        endTiming("FTZ on recursive signals");

        // Annotate L1 with type information
        startTiming("L1 typeAnnotation");
        typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
        endTiming("L1 typeAnnotation");
    }

    // Auto differentiation
    if (gGlobal->gAutoDifferentiate) {
        L1 = signalAutoDifferentiate(L1);
        typeAnnotation(L1, gGlobal->gLocalCausalityCheck);
    }

    // Needed before 'simplify' (see sigPromotion.hh)
    startTiming("Cast and Promotion");
    Tree L2 = signalPromote(L1);
    endTiming("Cast and Promotion");

    // Simplify by executing every computable operation
    startTiming("L2 simplification");
    Tree L3 = simplify(L2);
    endTiming("L2 simplification");

    // Annotate L3 with type information
    startTiming("L3 typeAnnotation");
    typeAnnotation(L3, gGlobal->gLocalCausalityCheck);
    endTiming("L3 typeAnnotation");

    startTiming("Cast and Promotion");
    Tree L4 = signalPromote(L3);
    endTiming("Cast and Promotion");

    startTiming("L4 typeAnnotation");
    typeAnnotation(L4, gGlobal->gLocalCausalityCheck);
    endTiming("L4 typeAnnotation");

    // Must be done after simplification so that 'size' signal is properly simplified to a constant
    if (gGlobal->gCheckTable) {
        // Check and generate safe access to rdtable/rwtable
        startTiming("Safe access to rdtable/rwtable");
        L4 = signalTablePromote(L4);
        endTiming("Safe access to rdtable/rwtable");

        // Annotate L4 with type information
        startTiming("L4 typeAnnotation");
        typeAnnotation(L4, gGlobal->gLocalCausalityCheck);
        endTiming("L4 typeAnnotation");
    }

    if (gGlobal->gCheckIntRange) {
        // Check and generate safe float to integer range conversion
        startTiming("Safe float to integer conversion");
        L4 = signalIntCastPromote(L4);
        endTiming("Safe float to integer conversion");

        // Annotate L4 with type information
        startTiming("L4 typeAnnotation");
        typeAnnotation(L4, gGlobal->gLocalCausalityCheck);
        endTiming("L4 typeAnnotation");
    }

    // Check signal tree
    startTiming("L4 signalChecker");
    SignalChecker checker(L4);
    endTiming("L4 signalChecker");
    return L4;
}

// Public API
LIBFAUST_API Tree simplifyToNormalForm(Tree sig)
{
    if (isList(sig)) {
        Tree t2 = sig->getProperty(gGlobal->NORMALFORM);
        if (!t2) {
            t2 = simplifyToNormalFormAux(sig);
            sig->setProperty(gGlobal->NORMALFORM, t2);
        }
        return t2;
    } else {
        return simplifyToNormalForm(cons(sig, gGlobal->nil));
    }
}

LIBFAUST_API tvec simplifyToNormalForm2(tvec siglist)
{
    tvec res;
    for (const auto& it : siglist) {
        res.push_back(simplifyToNormalForm(it));
    }
    return res;
}

LIBFAUST_API string printSignal(Tree sig, bool shared, int max_size)
{
    // Clear print state
    gGlobal->clear();
    stringstream str;
    if (shared) {
        ppsigShared(sig, str, max_size);
    } else {
        str << ppsig(sig, max_size) << endl;
    }
    return str.str();
}

LIBFAUST_API string printBox(Tree box, bool shared, int max_size)
{
    // Clear print state
    gGlobal->clear();
    stringstream str;
    if (shared) {
        boxppShared(box, str);
    } else {
        str << mBox(box, max_size) << endl;
    }
    return str.str();
}