File: normalize.cpp

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (141 lines) | stat: -rw-r--r-- 4,026 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
/************************************************************************
 ************************************************************************
    FAUST compiler
    Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/

#include <stdio.h>
#include <list>
#include <map>

#include "aterm.hh"
#include "exception.hh"
#include "mterm.hh"
#include "normalize.hh"
#include "ppsig.hh"
#include "signals.hh"
#include "sigorderrules.hh"
#include "sigprint.hh"
#include "simplify.hh"
#include "tlib.hh"

using namespace std;
#undef TRACE

/**
 * Compute the Add-Normal form of a term t.
 * \param t the term to be normalized
 * \return the normalized term
 */
Tree normalizeAddTerm(Tree t)
{
#ifdef TRACE
    cerr << "START normalizeAddTerm : " << ppsig(t) << endl;
#endif

    aterm A(t);
#ifdef TRACE
    cerr << "ATERM of " << A << endl;
#endif
    mterm D = A.greatestDivisor();
    while (D.isNotZero() && D.complexity() > 0) {
#ifdef TRACE
        cerr << "*** GREAT DIV : " << D << endl;
#endif
        A = A.factorize(D);
        D = A.greatestDivisor();
    }
    Tree r = A.normalizedTree();
#ifdef TRACE
    cerr << "ATERM of " << A << " --> " << ppsig(r) << endl;
#endif
    return r;
}

/**
 * Compute the normal form of a 1-sample delay term s'.
 * The normalisation rules are :
 *     	0' -> 0 /// INACTIVATE dec07 bug recursion
 *     	(k*s)' -> k*s'
 *		(s/k)' -> s'/k
 * \param s the term to be delayed by 1 sample
 * \return the normalized term
 */
Tree normalizeDelay1Term(Tree s)
{
    return normalizeDelayTerm(s, tree(1));
}

/**
 * Compute the normal form of a delay term (s@d).
 * The normalisation rules are :
 *		s@0 -> s
 *     	0@d -> 0
 *     	(k*s)@d -> k*(s@d)
 *		(s/k)@d -> (s@d)/k
 * 		(s@n)@m -> s@(n+m) and n is constant
 * Note that the same rules can't be applied to
 * + and - because the value of the first d samples
 * would be wrong.
 * \param s the term to be delayed
 * \param d the value of the delay
 * \return the normalized term
 */
Tree normalizeDelayTerm(Tree s, Tree d)
{
    Tree x, y, r;
    int  i;

    if (isZero(d)) {
        if (isProj(s, &i, r)) {
            return sigDelay(s, d);
        } else {
            return s;
        }

    } else if (isZero(s)) {
        return s;

    } else if (isSigMul(s, x, y)) {
        if (getSigOrder(x) < 2) {
            return /*simplify*/ (sigMul(x, normalizeDelayTerm(y, d)));
        } else if (getSigOrder(y) < 2) {
            return /*simplify*/ (sigMul(y, normalizeDelayTerm(x, d)));
        } else {
            return sigDelay(s, d);
        }

    } else if (isSigDiv(s, x, y)) {
        if (getSigOrder(y) < 2) {
            return /*simplify*/ (sigDiv(normalizeDelayTerm(x, d), y));
        } else {
            return sigDelay(s, d);
        }

    } else if (isSigDelay(s, x, y)) {
        if (getSigOrder(y) < 2) {
            // (x@n)@m = x@(n+m) when n is constant
            return normalizeDelayTerm(x, simplify(sigAdd(d, y)));
        } else {
            return sigDelay(s, d);
        }

    } else {
        return sigDelay(s, d);
    }
}