File: simplify.cpp

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (475 lines) | stat: -rw-r--r-- 12,823 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
/************************************************************************
 ************************************************************************
    FAUST compiler
    Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/

#include <stdio.h>
#include <map>

#include "compatibility.hh"
#include "exception.hh"
#include "global.hh"
#include "list.hh"
#include "normalize.hh"
#include "num.hh"
#include "ppsig.hh"
#include "recursivness.hh"
#include "signals.hh"
#include "sigorderrules.hh"
#include "sigprint.hh"
#include "sigtype.hh"
#include "sigtyperules.hh"
#include "simplify.hh"
#include "xtended.hh"

using namespace std;

#undef TRACE

// declarations

static Tree simplification(Tree sig);
static Tree sigMap(Tree key, tfun f, Tree t);

static Tree traced_simplification(Tree sig)
{
    faustassert(sig);
#ifdef TRACE
    cerr << ++gGlobal->TABBER << "Start simplification of : " << ppsig(sig, MAX_ERROR_SIZE) << endl;
    /*
    fprintf(stderr, "\nStart simplification of : ");
    printSignal(sig, stderr);
    fprintf(stderr, "\n");
    */
#endif
    Tree r = simplification(sig);
    faustassert(r != nullptr);
#ifdef TRACE
    cerr << --gGlobal->TABBER << "Simplification of : " << ppsig(sig, MAX_ERROR_SIZE)
         << " Returns : " << ppsig(r, MAX_ERROR_SIZE) << endl;
    /*
    fprintf(stderr, "Simplification of : ");
    printSignal(sig, stderr);
    fprintf(stderr, " -> ");
    printSignal(r, stderr);
    fprintf(stderr, "\n");
    */
#endif
    return r;
}

Tree simplify(Tree sig)
{
    return sigMap(gGlobal->SIMPLIFIED, traced_simplification, sig);
}

// Implementation

static bool isSigBool(Tree sig)
{
    int  opnum;
    Tree t1, t2;

    if (!isSigBinOp(sig, &opnum, t1, t2)) {
        return false;
    }
    if (isBoolOpcode(opnum)) {
        return true;
    }

    return isLogicalOpcode(opnum) && isSigBool(t1) && isSigBool(t2);
}

static Tree simplification(Tree sig)
{
    faustassert(sig);
    int  opnum, opnum2;
    Tree t1, t2, t3, v1, v2;

    xtended* xt = (xtended*)getUserData(sig);
    // primitive elements
    if (xt) {
        vector<Tree> args;
        for (int i = 0; i < sig->arity(); i++) {
            args.push_back(sig->branch(i));
        }

        faustassert(args.size() == xt->arity());

        // to avoid negative power to further normalization
        if (xt != gGlobal->gPowPrim) {
            return xt->computeSigOutput(args);
        } else {
            return normalizeAddTerm(xt->computeSigOutput(args));
        }

    } else if (isSigBinOp(sig, &opnum, t1, t2)) {
        BinOp* op = gBinOpTable[opnum];
        Node   n1 = t1->node();
        Node   n2 = t2->node();

        if (isNum(n1) && isNum(n2)) {
            return tree(op->compute(n1, n2));
        }

        // New rules for -E

        // -n*(x-y) -> n*(y-x)
        // -1*(x-y) -> y-x
        else if ((opnum == kMul) && isNegative(n1) && isSigBinOp(t2, &opnum2, v1, v2) &&
                 (opnum2 == kSub)) {
            if (isMinusOne(n1)) {
                return sigBinOp(kSub, v2, v1);
            } else {
                return sigBinOp(kMul, tree(minusNode(n1)), sigBinOp(kSub, v2, v1));
            }

            // (x-y)*-n -> n*(y-x)
            // (x-y)*-1 -> y-x
        } else if ((opnum == kMul) && isNegative(n2) && isSigBinOp(t1, &opnum2, v1, v2) &&
                   (opnum2 == kSub)) {
            if (isMinusOne(n2)) {
                return sigBinOp(kSub, v2, v1);
            } else {
                return sigBinOp(kMul, tree(minusNode(n2)), sigBinOp(kSub, v2, v1));
            }
        }

        // n*(m*x) -> (n*m)*x or x (if n*m == 1)
        else if ((opnum == kMul) && isNum(n1) && isSigBinOp(t2, &opnum2, v1, v2) &&
                 (opnum2 == kMul) && isNum(v1)) {
            Tree m = tree(mulNode(n1, v1->node()));
            if (isOne(m)) {
                return v2;
            } else {
                return sigBinOp(kMul, m, v2);
            }
        }

        // n*(x*m) -> (n*m)*x or x (if n*m == 1)
        else if ((opnum == kMul) && isNum(n1) && isSigBinOp(t2, &opnum2, v1, v2) &&
                 (opnum2 == kMul) && isNum(v2)) {
            Tree m = tree(mulNode(n1, v2->node()));
            if (isOne(m)) {
                return v1;
            } else {
                return sigBinOp(kMul, m, v1);
            }
        }

        // End new rules
        else if (opnum == kSub && isZero(n1)) {
            return sigBinOp(kMul, sigInt(-1), t2);
        }

        else if (op->isLeftNeutral(n1)) {
            return t2;
        }

        else if (op->isLeftAbsorbing(n1)) {
            return t1;
        }

        else if (op->isRightNeutral(n2)) {
            return t1;
        }

        else if (op->isRightAbsorbing(n2)) {
            return t2;
        }

        else if (t1 == t2) {
            if ((opnum == kAND) || (opnum == kOR)) {
                return t1;
            }
            if ((opnum == kGE) || (opnum == kLE) || (opnum == kEQ)) {
                return sigInt(1);
            }
            if ((opnum == kGT) || (opnum == kLT) || (opnum == kNE) || (opnum == kRem) ||
                (opnum == kXOR)) {
                return sigInt(0);
            }

        } else if ((opnum == kAND) || (opnum == kOR)) {
            if (isOne(n1) && isSigBool(t2)) {
                return opnum == kAND ? t2 : sigInt(1);
            }
            if (isOne(n2) && isSigBool(t1)) {
                return opnum == kAND ? t1 : sigInt(1);
            }
        }

        return (global::isOpt("FAUST_SIG_NO_NORM") ? sig : normalizeAddTerm(sig));

    } else if (isSigDelay1(sig, t1)) {
        return normalizeDelay1Term(t1);

    } else if (isSigDelay(sig, t1, t2)) {
        return normalizeDelayTerm(t1, t2);

    } else if (isSigIntCast(sig, t1)) {
        int    i;
        double x;
        Node   n1 = t1->node();

        if (isInt(n1, &i)) {
            return t1;
        }
        if (isDouble(n1, &x)) {
            return tree(int(x));
        }

        return sig;

    } else if (isSigBitCast(sig, t1)) {
        return sig;

    } else if (isSigFloatCast(sig, t1)) {
        int    i;
        double x;
        Node   n1 = t1->node();

        if (isInt(n1, &i)) {
            return tree(double(i));
        }
        if (isDouble(n1, &x)) {
            return t1;
        }

        return sig;

    } else if (isSigSelect2(sig, t1, t2, t3)) {
        Node n1 = t1->node();

        if (isZero(n1)) {
            return t2;
        }
        if (isNum(n1)) {
            return t3;
        }

        if (t2 == t3) {
            return t2;
        }

        return sig;

    } else if (isSigEnable(sig, t1, t2)) {
        Node n2 = t2->node();

        if (isZero(n2)) {
            return sigInt(0);  // a 'zero' with the correct type
        }

        else if (isOne(n2)) {
            return t1;
        }

        else {
            return sig;
        }

        // Control(t1, 0) => 0
        // Control(t1, 1) => t1
        // otherwise sig
    } else if (isSigControl(sig, t1, t2)) {
        Node n2 = t2->node();

        if (isZero(n2)) {
            return sigInt(0);  // a 'zero' with the correct type
        }

        else if (isOne(n2)) {
            return t1;
        }

        else {
            return sig;
        }

    } else if (isSigLowest(sig, t1)) {
        typeAnnotation(t1, gGlobal->gLocalCausalityCheck);
        Type ty = getCertifiedSigType(t1);
        return sigReal(ty->getInterval().lo());

    } else if (isSigHighest(sig, t1)) {
        typeAnnotation(t1, gGlobal->gLocalCausalityCheck);
        Type ty = getCertifiedSigType(t1);
        return sigReal(ty->getInterval().hi());

    } else {
        return sig;
    }
}

/**
 * Recursively transform a graph by applying a function f.
 * map(f, foo[t1..tn]) = f(foo[map(f,t1)..map(f,tn)])
 */
static Tree sigMap(Tree key, tfun f, Tree t)
{
    Tree p, id, body;

    if (getProperty(t, key, p)) {
        return (isNil(p)) ? t : p;  // trick to avoid loops

    } else if (isRec(t, id, body)) {
        setProperty(t, key, gGlobal->nil);  // avoid infinite loop
        return rec(id, sigMap(key, f, body));

    } else {
        tvec br;
        int  n   = t->arity();
        int  arg = 0;
        if (isUIInputItem(t) || isUIOutputItem(t)) {
            // Do not handle labels to avoid simplifying them when using reserved keyword
            br.push_back(t->branch(arg));
            arg++;
        }
        for (int i = arg; i < n; i++) {
            br.push_back(sigMap(key, f, t->branch(i)));
        }

        Tree r2 = f(tree(t->node(), br));
        if (r2 == t) {
            setProperty(t, key, gGlobal->nil);
        } else {
            setProperty(t, key, r2);
        }
        return r2;
    }
}

/**
 * Like SigMap, recursively transform a graph by applying a
 * function f. But here recursive trees are also renamed.
 * map(f, foo[t1..tn]) = f(foo[map(f,t1)..map(f,tn)])
 */
static Tree sigMapRename(Tree key, Tree env, tfun f, Tree t)
{
    Tree p, id, body;

    if (getProperty(t, key, p)) {
        return (isNil(p)) ? t : p;  // trick to avoid loops

    } else if (isRec(t, id, body)) {
        faustassert(isRef(t, id));  // temporary control

        Tree id2;
        if (searchEnv(id, id2, env)) {
            // already in the process of visiting this recursion
            return ref(id2);
        } else {
            // first visit of this recursion
            id2        = tree(Node(unique("renamed")));
            Tree body2 = sigMapRename(key, pushEnv(id, id2, env), f, body);
            return rec(id2, body2);
        }

    } else {
        tvec br;
        int  n   = t->arity();
        int  arg = 0;
        if (isUIInputItem(t) || isUIOutputItem(t)) {
            // Do not handle labels to avoid simplifying them when using reserved keyword
            br.push_back(t->branch(arg));
            arg++;
        }
        for (int i = arg; i < n; i++) {
            br.push_back(sigMapRename(key, env, f, t->branch(i)));
        }

        Tree r2 = f(tree(t->node(), br));
        if (r2 == t) {
            setProperty(t, key, gGlobal->nil);
        } else {
            setProperty(t, key, r2);
        }
        return r2;
    }
}

#if 0
static void eraseProperties(Tree key, Tree t)
{
	//printf("start sigMap\n");
	Tree p,id,body;

	if (getProperty(t, key, p)) {
		// already erased, nothing to do

	} else if (isRec(t, id, body)) {
		t->clearProperties();
        Tree r = rec(id, body);
        faustassert(r==t);
		setProperty(t, key, gGlobal->nil);	// avoid infinite loop
		eraseProperties(key, body);

	} else {

		for (int i = 0; i < t->arity(); i++) {
			eraseProperties(key,t->branch(i));
		}
	}
}

static void eraseAllProperties(Tree t)
{
    cerr << "begin eraseAllProperties" << endl;
	eraseProperties(tree(Node(unique("erase_"))), t);
    cerr << "end eraseAllProperties" << endl;
}
#endif

static Tree docTableConverter(Tree sig);

/**
 * Converts regular tables into doc tables in order to
 * facilitate the mathematical documentation generation
 */
Tree docTableConvertion(Tree sig)
{
    Tree r = sigMapRename(gGlobal->DOCTABLES, gGlobal->NULLENV, docTableConverter, sig);
    return r;
}

// Implementation

static Tree docTableConverter(Tree sig)
{
    Tree gen, wi, ws, tbl, ri, size, isig;

    if (isSigRDTbl(sig, tbl, ri)) {
        // we are in a table to convert
        if (isSigWRTbl(tbl, size, gen)) {
            // rdtable
            faustassert(isSigGen(gen, isig));
            return sigDocAccessTbl(sigDocConstantTbl(size, isig), ri);
        } else {
            // rwtable
            faustassert(isSigWRTbl(tbl, size, gen, wi, ws));
            faustassert(isSigGen(gen, isig));
            return sigDocAccessTbl(sigDocWriteTbl(size, isig, wi, ws), ri);
        }

    } else {
        // nothing to convert
        return sig;
    }
}