1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101
|
/************************************************************************
************************************************************************
FAUST compiler
Copyright (C) 2003-2018 GRAME, Centre National de Creation Musicale
---------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
************************************************************************
************************************************************************/
#include <set>
#include "graphSorting.hh"
using namespace std;
#ifdef WIN32
#pragma warning(disable : 4800)
#endif
/**
* Set the order of a loop and place it to appropriate set.
*/
static void setOrder(Loop* l, int order, lgraph& V)
{
faustassert(l);
V.resize(order + 1);
if (l->fOrder >= 0) {
V[l->fOrder].erase(l);
}
l->fOrder = order;
V[order].insert(l);
}
/**
* Set the order of T1's loops and collect there sons into T2.
*/
static void setLevel(int order, const lset& T1, lset& T2, lgraph& V)
{
for (lset::const_iterator p = T1.begin(); p != T1.end(); p++) {
setOrder(*p, order, V);
T2.insert((*p)->fBackwardLoopDependencies.begin(), (*p)->fBackwardLoopDependencies.end());
}
}
static void resetOrder(Loop* l, set<Loop*>& visited)
{
// Not yet visited...
if (visited.find(l) == visited.end()) {
visited.insert(l);
l->fOrder = -1;
for (lset::const_iterator p = l->fBackwardLoopDependencies.begin();
p != l->fBackwardLoopDependencies.end(); p++) {
resetOrder(*p, visited);
}
}
}
/**
* Topological sort of an acyclic graph of loops. The loops
* are collect in an lgraph : a vector of sets of loops.
*/
void sortGraph(Loop* root, lgraph& V)
{
faustassert(root);
set<Loop*> visited;
resetOrder(root, visited);
lset T1, T2;
T1.insert(root);
int level = 0;
V.clear();
do {
setLevel(level, T1, T2, V);
T1 = T2;
T2.clear();
level++;
} while (T1.size() > 0);
// Erase empty levels
lgraph::iterator p = V.begin();
while (p != V.end()) {
if ((*p).size() == 1 && (*(*p).begin())->isEmpty()) {
p = V.erase(p);
} else {
p++;
}
}
}
|