File: sigRetiming.cpp

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (405 lines) | stat: -rw-r--r-- 13,501 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
/************************************************************************
 ************************************************************************
    FAUST compiler / Retiming transformation
    Copyright (C) 2024-2024 INRIA
    ---------------------------------------------------------------------
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU Lesser General Public License as published by
    the Free Software Foundation; either version 2.1 of the License, or
    (at your option) any later version.

    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU Lesser General Public License for more details.

    You should have received a copy of the GNU Lesser General Public License
    along with this program; if not, write to the Free Software
    Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/

#include <stdlib.h>
#include <cstdlib>
#include <sstream>
#include <vector>

#include "floats.hh"
#include "global.hh"
#include "ppsig.hh"
#include "prim2.hh"
#include "sigPromotion.hh"
#include "signals.hh"
#include "sigtyperules.hh"
#include "xtended.hh"

/**
 * @brief Helper class that implements the Retiming transformation. It is used by sigRetiming to
 * retime a list of signals. The transformation(lsig) method does the actual work.
 *
 */
class SignalRetimer final : public SignalIdentity {
    std::unordered_map<Tree, int>  fTiming;
    std::unordered_map<Tree, Tree> fRecVar;

   public:
    SignalRetimer() {}

   protected:
    Tree transformation(Tree sig);
    int  tmaxList(Tree l);
};

// --------------------------------------------------------------------------------------------
//                                          API
// --------------------------------------------------------------------------------------------

/**
 * @brief add registers to a list of signal to balance timing
 *
 * @param lsig a list of signals without registers
 * @param trace optional trace flag
 * @return Tree a list of signals with registers
 */
Tree sigRetiming(Tree lsig, bool trace)
{
    SignalRetimer SR;
    if (trace) {
        SR.trace(true, "Retiming");
    }
    return SR.mapself(lsig);
}

// --------------------------------------------------------------------------------------------
//                                      Implementation
// --------------------------------------------------------------------------------------------

/**
 * @brief add n registers to a signal, group them if possible
 *
 * @param sig
 * @param n number of registers to add
 * @return Tree
 */

static Tree addRegisters(Tree sig, int n)
{
    int i;

    if (n == 0) {
        // no registers to add
        return sig;
    }
    if (Tree x; isSigRegister(sig, &i, x)) {
        // we combine with existing registers
        return addRegisters(x, i + n);
    }
    // simple case, we add n registers
    return sigRegister(n, sig);
}

/**
 * @brief max timing of a list of signals
 *
 * @param l
 * @return int
 */

int SignalRetimer::tmaxList(Tree l)
{
    int tmax = 0;
    while (!isNil(l)) {
        tmax = std::max(tmax, fTiming[hd(l)]);
        l    = tl(l);
    }
    return tmax;
}

/**
 * @brief Add the needed registers to a signals and its subsignals
 *
 * @param sig a signal without registers
 * @return Tree the transformed signal with registers
 */

Tree SignalRetimer::transformation(Tree sig)
{
    int     i;
    int64_t i64;
    double  r;
    Tree    c, sel, w, x, y, z, var, le, label, ff, largs, type, name, file, sf;

    if (getUserData(sig)) {
        std::vector<Tree> nb1, nb2;
        int               tmax = 0;
        for (Tree b : sig->branches()) {
            Tree b2 = self(b);
            tmax    = std::max(tmax, fTiming[b2]);
            nb1.push_back(self(b));
        }
        for (Tree c : nb1) {
            nb2.push_back(addRegisters(c, tmax - fTiming[c]));
        }
        Tree res     = sigRegister(1, tree(sig->node(), nb2));
        fTiming[res] = tmax + 1;
        return res;

    } else if (isSigInt(sig, &i)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigInt64(sig, &i64)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigReal(sig, &r)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigWaveform(sig)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigInput(sig, &i)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigOutput(sig, &i, x)) {
        Tree x2      = self(x);
        Tree res     = sigOutput(i, x2);
        fTiming[res] = fTiming[x2];  // no register here
        return res;
    } else if (isSigDelay1(sig, x)) {
        Tree v       = self(x);
        Tree res     = sigRegister(1, sigDelay1(v));
        fTiming[res] = fTiming[v] + 1;
        return res;
    } else if (isSigDelay(sig, x, y)) {
        Tree v   = self(x);
        Tree w   = self(y);
        int  tm  = std::max(fTiming[v], fTiming[w]);
        Tree res = sigRegister(
            1, sigDelay(addRegisters(v, tm - fTiming[v]), addRegisters(w, tm - fTiming[w])));
        fTiming[res] = tm + 1;
        return res;
    } else if (isSigPrefix(sig, x, y)) {
        Tree x2  = self(x);
        Tree y2  = self(y);
        int  tm  = std::max(fTiming[x2], fTiming[y2]);
        Tree res = sigRegister(
            1, sigPrefix(addRegisters(x2, tm - fTiming[x2]), addRegisters(y2, tm - fTiming[y2])));
        fTiming[res] = tm + 1;
        return res;
    } else if (isSigBinOp(sig, &i, x, y)) {
        Tree x2  = self(x);
        Tree y2  = self(y);
        int  tm  = std::max(fTiming[x2], fTiming[y2]);
        Tree res = sigRegister(
            1, sigBinOp(i, addRegisters(x2, tm - fTiming[x2]), addRegisters(y2, tm - fTiming[y2])));
        fTiming[res] = tm + 1;
        return res;
    }

    // Foreign functions
    else if (isSigFFun(sig, ff, largs)) {
        Tree largs2  = mapself(largs);
        int  tmax    = tmaxList(largs2);
        Tree res     = sigRegister(1, sigFFun(ff, mapself(largs)));
        fTiming[res] = tmax + 1;
        return res;
    } else if (isSigFConst(sig, type, name, file)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigFVar(sig, type, name, file)) {
        fTiming[sig] = 0;
        return sig;
    }

    // Tables
    else if (isSigWRTbl(sig, w, x, y, z)) {
        if (y == gGlobal->nil) {
            // rdtable
            Tree w2      = self(w);
            Tree x2      = self(x);
            int  tmax    = std::max(fTiming[w2], fTiming[x2]);
            Tree res     = sigRegister(1, sigWRTbl(addRegisters(w2, tmax - fTiming[w2]),
                                                   addRegisters(x2, tmax - fTiming[x2])));
            fTiming[res] = tmax + 1;
            return res;
        } else {
            // rwtable
            Tree w2 = self(w);
            Tree x2 = self(x);
            Tree y2 = self(y);
            Tree z2 = self(z);
            int  tmax =
                std::max(fTiming[w2], std::max(fTiming[x2], std::max(fTiming[y2], fTiming[z2])));
            Tree res     = sigRegister(1, sigWRTbl(addRegisters(w2, tmax - fTiming[w2]),
                                                   addRegisters(x2, tmax - fTiming[x2]),
                                                   addRegisters(y2, tmax - fTiming[y2]),
                                                   addRegisters(z2, tmax - fTiming[z2])));
            fTiming[res] = tmax + 1;
            return res;
        }
    } else if (isSigRDTbl(sig, x, y)) {
        Tree x2      = self(x);
        Tree y2      = self(y);
        int  tmax    = std::max(fTiming[x2], fTiming[y2]);
        Tree res     = sigRegister(1, sigRDTbl(addRegisters(x2, tmax - fTiming[x2]),
                                               addRegisters(y2, tmax - fTiming[y2])));
        fTiming[res] = tmax + 1;
        return res;
    }
#if 0
    // Doc
    else if (isSigDocConstantTbl(sig, x, y)) {
        return sigDocConstantTbl(self(x), self(y));
    } else if (isSigDocWriteTbl(sig, x, y, u, v)) {
        return sigDocWriteTbl(self(x), self(y), self(u), self(v));
    } else if (isSigDocAccessTbl(sig, x, y)) {
        return sigDocAccessTbl(self(x), self(y));
    }
#endif

    // Select2 and Select3
    else if (isSigSelect2(sig, sel, x, y)) {
        Tree sel2    = self(sel);
        Tree x2      = self(x);
        Tree y2      = self(y);
        int  tmax    = std::max(fTiming[sel2], std::max(fTiming[x2], fTiming[y2]));
        Tree res     = sigRegister(1, sigSelect2(addRegisters(sel2, tmax - fTiming[sel2]),
                                                 addRegisters(x2, tmax - fTiming[x2]),
                                                 addRegisters(y2, tmax - fTiming[y2])));
        fTiming[res] = tmax + 1;
        return res;
    }

    // Table sigGen
    else if (isSigGen(sig, x)) {
        if (fVisitGen) {
            Tree res     = sigGen(self(x));
            fTiming[res] = 0;
            return res;
        } else {
            fTiming[sig] = 0;
            return sig;
        }
    }

    // recursive signals
    else if (isProj(sig, &i, x)) {
        Tree res     = sigProj(i, self(x));
        fTiming[res] = 0;
        return res;
    } else if (isRec(sig, var, le)) {
        if (fRecVar.count(sig)) {
            // we have/are already visiting this recursive group
            Tree res = fRecVar[sig];
            return res;
        } else {
            // first visit
            Tree var2    = tree(Node(unique("RT")));  // New name for the transformed rec group
            fRecVar[sig] = rec(var2, gGlobal->nil);   // temporary result to avoid infinite loops
            Tree le2     = mapself(le);
            Tree res     = rec(var2, le2);
            fRecVar[sig] = res;  // not needed, but for clarity
            return res;
        }
    }

    // Int and Float Cast
    else if (isSigIntCast(sig, x)) {
        Tree x2      = self(x);
        Tree res     = sigRegister(1, sigIntCast(x2));
        fTiming[res] = fTiming[x2] + 1;
        return res;
    } else if (isSigBitCast(sig, x)) {
        Tree x2      = self(x);
        Tree res     = sigRegister(1, sigBitCast(x2));
        fTiming[res] = fTiming[x2] + 1;
        return res;
    } else if (isSigFloatCast(sig, x)) {
        Tree x2      = self(x);
        Tree res     = sigRegister(1, sigFloatCast(x2));
        fTiming[res] = fTiming[x2] + 1;
        return res;
    }

    // UI
    else if (isSigButton(sig, label)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigCheckbox(sig, label)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigVSlider(sig, label, c, x, y, z)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigHSlider(sig, label, c, x, y, z)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigNumEntry(sig, label, c, x, y, z)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigVBargraph(sig, label, x, y, z)) {
        Tree z2      = self(z);
        Tree res     = sigRegister(1, sigVBargraph(label, x, y, z2));
        fTiming[res] = fTiming[z2] + 1;
        return res;
    } else if (isSigHBargraph(sig, label, x, y, z)) {
        Tree z2      = self(z);
        Tree res     = sigRegister(1, sigHBargraph(label, x, y, z2));
        fTiming[res] = fTiming[z2] + 1;
        return res;
    }

    // Soundfile length, rate, buffer
    else if (isSigSoundfile(sig, label)) {
        return sig;
    } else if (isSigSoundfileLength(sig, sf, x)) {
        return sigSoundfileLength(self(sf), self(x));
    } else if (isSigSoundfileRate(sig, sf, x)) {
        return sigSoundfileRate(self(sf), self(x));
    } else if (isSigSoundfileBuffer(sig, sf, x, y, z)) {
        return sigSoundfileBuffer(self(sf), self(x), self(y), self(z));
    }

    // Attach, Enable, Control
    else if (isSigAttach(sig, x, y)) {
        Tree x2      = self(x);
        Tree y2      = self(y);
        Tree res     = sigRegister(1, sigAttach(x2, y2));
        fTiming[res] = std::max(fTiming[x2], fTiming[y2]) + 1;
        return res;
    } else if (isSigEnable(sig, x, y)) {
        Tree x2      = self(x);
        Tree y2      = self(y);
        Tree res     = sigRegister(1, sigEnable(x2, y2));
        fTiming[res] = std::max(fTiming[x2], fTiming[y2]) + 1;
        return res;
    } else if (isSigControl(sig, x, y)) {
        Tree x2      = self(x);
        Tree y2      = self(y);
        Tree res     = sigRegister(1, sigControl(x2, y2));
        fTiming[res] = std::max(fTiming[x2], fTiming[y2]) + 1;
        return res;
    }

    // Signal interval annotation
    /*else if (isSigAssertBounds(sig, x, y, z)) {
        return sigAssertBounds(self(x), self(y), self(z));
    }*/
    else if (isSigLowest(sig, x)) {
        fTiming[sig] = 0;
        return sig;
    } else if (isSigHighest(sig, x)) {
        fTiming[sig] = 0;
        return sig;
    }

    else if (isSigRegister(sig, &i, x)) {
        std::cerr << "ASSERT : already retimed : " << *sig << std::endl;
        faustassert(false);
    }

    else {
        std::cerr << "ASSERT : unrecognized signal : " << *sig << std::endl;
        faustassert(false);
    }
    return 0;
}