File: signalFIRCompiler.cpp

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (704 lines) | stat: -rw-r--r-- 25,112 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
/************************************************************************
 ************************************************************************
 FAUST compiler
 Copyright (C) 2025 GRAME, Centre National de Creation Musicale
 ---------------------------------------------------------------------
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU Lesser General Public License as published by
 the Free Software Foundation; either version 2.1 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/

#include "signalFIRCompiler.hh"
#include "compatibility.hh"  // For basename, pathToContent
#include "xtended.hh"

#include <iostream>
#include <string>
#include <vector>

using namespace std;

//-------------------------SignalFIRCompiler-------------------------------
//
// SignalFIRCompiler is designed to directly compile signals. The compilation process is divided
// into two main stages:
//
// 1) Preparation Stage (SignalBuilder). The SignalBuilder class traverses all output signal trees
// to:
//      - Allocate delay lines (both integer and real types) for sample-accurate delays and
//      recursive constructs.
//      - Allocate tables (both integer and real types) required for table-based signal generation.
//      - Collect and configure input and output control signals (e.g., sliders, buttons,
//      bargraphs).
//
// 2) Compilation Stage (SignalFIRCompiler). The SignalFIRCompiler class:
//      - Traverses all output signal trees.
//      - Compile the value of each output signal sample by recursively compiling the expression
//      tree.
//      - Uses a value stack to manage intermediate compilation results.
//
// After SignalBuilder has prepared the signal trees, the tables are precompiled once during
// the initialization phase via the `compileTables` method.
//
// `compile()` iterates over every output in the linked list `fOutputSig`.
// * For each signal it:
// * 1. Recursively traverses the expression tree with `self()`.
// * 2. Retrieves the resulting FIR value from `fValueStack`.
// * 3. Stores that value in the outputs.
//
//----------------------------------------------------------------------

void SignalFIRCompiler::compileXtended(Tree sig, xtended* xt)
{
    list<ValueInst*>       args;
    vector<Typed::VarType> atypes;
    int                    rtype = getCertifiedSigType(sig)->nature();
    // Compiles all arguments
    for (Tree b : sig->branches()) {
        self(b);
        args.push_back(popRes());
        atypes.push_back(convert2FIRType(getCertifiedSigType(b)->nature()));
    }
    // Compiles the function declaration
    fGlobalBlock->pushBackInst(IB::genFunction(xt->fname(rtype), convert2FIRType(rtype), atypes));
    // Compiles the function call
    pushRes(IB::genFunCallInst(xt->fname(rtype), args));
}

void SignalFIRCompiler::compileSigInt(Tree sig, int i_val)
{
    pushRes(IB::genInt32NumInst(i_val));
}

void SignalFIRCompiler::compileSigInt64(Tree sig, int64_t i64_val)
{
    pushRes(IB::genInt32NumInst(i64_val));
}

void SignalFIRCompiler::compileSigReal(Tree sig, double r_val)
{
    pushRes(IB::genRealNumInst(itfloat(), r_val));
}

void SignalFIRCompiler::compileSigInput(Tree sig, int idx)
{
    ValueInst* res =
        IB::genLoadArrayStackVar(subst("input$0", T(idx)), IB::genLoadLoopVar("sample"));
    pushRes(res);
}

void SignalFIRCompiler::compileSigOutput(Tree sig, int i_val, Tree x_tree)
{
    self(x_tree);  // Evaluate the expression connected to the output
}

void SignalFIRCompiler::compileSigDelay1(Tree sig, Tree x_tree)
{
    self(x_tree);
    ValueInst* v1  = popRes();
    ValueInst* one = IB::genInt32NumInst(1);
    pushRes(writeReadDelay(x_tree, v1, one));
}

void SignalFIRCompiler::compileSigDelay(Tree sig, Tree x_tree, Tree y_tree)
{
    if (isZeroDelay(y_tree)) {
        self(x_tree);
    } else {
        self(x_tree);
        ValueInst* v1 = popRes();
        self(y_tree);
        ValueInst* v2 = popRes();
        pushRes(writeReadDelay(x_tree, v1, v2));
    }
}

void SignalFIRCompiler::compileSigSelect2(Tree sig, Tree sel, Tree x_tree, Tree y_tree)
{
    // Compiles the condition and both branches
    self(sel);
    ValueInst* sel_val = popRes();
    self(x_tree);
    ValueInst* x_val = popRes();
    self(y_tree);
    ValueInst* y_val = popRes();
    // Inverted
    pushRes(IB::genSelect2Inst(sel_val, y_val, x_val));
}

void SignalFIRCompiler::compileSigPrefix(Tree sig, Tree x_tree, Tree y_tree)
{
    /*
     // Generate a condition: if (fIOTA == 0) use x, else use y
     ValueInst* iota_zero = IB::genEq(loadIOTA(), IB::genInt32NumInst(0));
     // Compile both branches
     self(x_tree);
     ValueInst* init_val = popRes();
     self(y_tree);
     ValueInst* next_val = popRes();
     // Select between init_val and next_val
     pushRes(IB::genSelect2Inst(iota_zero, init_val, next_val));
     */
    /*
     // TODO
     self(y_tree);
     if (fIOTA == 0) {
     self(x_tree);
     }
     */
    self(y_tree);
}

void SignalFIRCompiler::compileSigBinOp(Tree sig, int opt_op, Tree x_tree, Tree y_tree)
{
    self(x_tree);
    ValueInst* v1 = popRes();
    self(y_tree);
    ValueInst* v2 = popRes();
    if ((opt_op == kMul) && isMinusOne(x_tree)) {
        pushRes(IB::genNeg(v2));
    } else if ((opt_op == kMul) && isMinusOne(y_tree)) {
        pushRes(IB::genNeg(v1));
    } else {
        pushRes(IB::genBinopInst(opt_op, v1, v2));
    }
}

void SignalFIRCompiler::compileSigFConst(Tree sig, Tree type_tree, Tree name_tree, Tree file_tree)
{
    // Special case for SR constant
    if (string(tree2str(name_tree)) == "fSamplingFreq") {
        pushRes(IB::genLoadStructVar("fSampleRate"));
    } else {
        // TODO
        faustassert(false);
        pushRes(IB::genTypedZero(itfloat()));
    }
}

void SignalFIRCompiler::compileSigWRTbl(Tree sig, Tree size_tree, Tree gen_tree, Tree wi_tree,
                                        Tree ws_tree)
{
    if (isNil(wi_tree)) {
        // Nothing
    } else {
        self(wi_tree);
        ValueInst* write_idx = popRes();
        self(ws_tree);
        ValueInst* val = popRes();
        writeTable(sig, write_idx, val);
    }
}

void SignalFIRCompiler::compileSigRDTbl(Tree sig, Tree tbl_tree, Tree ri_tree)
{
    // Compiles table
    self(tbl_tree);
    // Then compile the access
    self(ri_tree);
    ValueInst* read_idx = popRes();
    pushRes(readTable(tbl_tree, read_idx));
}

void SignalFIRCompiler::compileSigGen(Tree sig, Tree x_tree)
{
    if (fVisitGen) {
        self(x_tree);
    } else {
        pushRes(IB::genTypedZero(itfloat()));
    }
}

void SignalFIRCompiler::compileSigWaveform(Tree sig)
{
    // Modulo based access in the waveform
    // int size  = sig->arity();
    // int index = fIOTA % size;
    // self(sig->branch(index));
    // TODO
    self(sig->branch(0));
}

void SignalFIRCompiler::compileProjRec(Tree sig, int proj_idx, Tree rec_expr_tree, Tree rec_vars,
                                       Tree rec_exprs)
{
    // First visit of the recursive signal
    if (fVisited.find(sig) == fVisited.end()) {
        faustassert(isRec(rec_expr_tree, rec_vars, rec_exprs));
        fVisited[sig]++;
        // Render the actual projection
        self(nth(rec_exprs, proj_idx));
        ValueInst* res = popRes();
        /*
         if (global::isDebug("SIG_RENDERER")) {
         std::cout << "Proj : " << res << "\n";
         }
         */
        ValueInst* zero = IB::genInt32NumInst(0);
        pushRes(writeReadDelay(sig, res, zero));

    } else {
        /*
         if (global::isDebug("SIG_RENDERER")) {
         std::cout << "SignalFIRCompiler : next visit of the recursive signal\n";
         }
         */
        ValueInst* zero = IB::genInt32NumInst(0);
        pushRes(readDelay(sig, zero));
    }
}

void SignalFIRCompiler::compileSigIntCast(Tree sig, Tree x_tree)
{
    self(x_tree);
    ValueInst* cur = popRes();
    pushRes(IB::genCastInt32Inst(cur));
}

void SignalFIRCompiler::compileSigBitCast(Tree sig, Tree x_tree)
{
    // Bitcast is complex. For a simple renderer, it might be an identity if types are
    // "close enough" or a reinterpretation of bits (e.g., float bits as int). This renderer
    // doesn't have type info readily on Node to do a true bitcast. Assuming it's a numeric
    // pass-through for now.
    self(x_tree);
}

void SignalFIRCompiler::compileSigFloatCast(Tree sig, Tree x_tree)
{
    self(x_tree);
    ValueInst* cur = popRes();
    pushRes(IB::genCastInst(cur, IB::genBasicTyped(itfloat())));
}

void SignalFIRCompiler::compileSigButton(Tree sig, Tree label_tree)
{
    pushRes(fInputControls[sig].getValue());
}

void SignalFIRCompiler::compileSigCheckbox(Tree sig, Tree label_tree)
{
    pushRes(fInputControls[sig].getValue());
}

void SignalFIRCompiler::compileSigVSlider(Tree sig, Tree label_tree, Tree c_tree, Tree x_tree,
                                          Tree y_tree, Tree z_tree)
{
    pushRes(fInputControls[sig].getValue());
}

void SignalFIRCompiler::compileSigHSlider(Tree sig, Tree label_tree, Tree c_tree, Tree x_tree,
                                          Tree y_tree, Tree z_tree)
{
    pushRes(fInputControls[sig].getValue());
}

void SignalFIRCompiler::compileSigNumEntry(Tree sig, Tree label_tree, Tree c_tree, Tree x_tree,
                                           Tree y_tree, Tree z_tree)
{
    pushRes(fInputControls[sig].getValue());
}

void SignalFIRCompiler::compileSigVBargraph(Tree sig, Tree label_tree, Tree x_tree, Tree y_tree,
                                            Tree z_tree)
{
    self(z_tree);
    ValueInst* val = topRes();
    writeStatement(z_tree, fOutputControls[sig].setValue(val));
}

void SignalFIRCompiler::compileSigHBargraph(Tree sig, Tree label_tree, Tree x_tree, Tree y_tree,
                                            Tree z_tree)
{
    self(z_tree);
    ValueInst* val = topRes();
    writeStatement(z_tree, fOutputControls[sig].setValue(val));
}

void SignalFIRCompiler::compileSigSoundfile(Tree sig, Tree label_tree)
{
    // TODO: Implement soundfile reading. Requires state management for file handlers,
    // position, etc.
    pushRes(IB::genTypedZero(itfloat()));
}

void SignalFIRCompiler::compileSigSoundfileLength(Tree sig, Tree sf_tree, Tree x_tree)
{
    // TODO
    self(sf_tree);
    popRes();
    self(x_tree);
    popRes();
    pushRes(IB::genTypedZero(itfloat()));
}

void SignalFIRCompiler::compileSigSoundfileRate(Tree sig, Tree sf_tree, Tree x_tree)
{
    // TODO
    self(sf_tree);
    popRes();
    self(x_tree);
    popRes();
    pushRes(IB::genTypedZero(itfloat()));
}

void SignalFIRCompiler::compileSigSoundfileBuffer(Tree sig, Tree sf_tree, Tree x_tree, Tree y_tree,
                                                  Tree z_tree)
{
    // TODO
    self(sf_tree);
    popRes();
    self(x_tree);
    popRes();
    self(y_tree);
    popRes();
    self(z_tree);
    popRes();
    pushRes(IB::genTypedZero(itfloat()));
}

void SignalFIRCompiler::compileSigAttach(Tree sig, Tree x_tree, Tree y_tree)
{
    // Interpret second arg then drop it
    self(y_tree);
    popRes();
    // And return the first one
    self(x_tree);
}

void SignalFIRCompiler::compileSigEnable(Tree sig, Tree x_tree, Tree y_tree)
{
    // x_tree is condition, y_tree is signal
    self(x_tree);
    Node enable = popRes();
    if (enable.getInt() != 0) {
        self(y_tree);
    } else {
        pushRes(IB::genTypedZero(itfloat()));
    }
}

void SignalFIRCompiler::compileSigControl(Tree sig, Tree x_tree, Tree y_tree)
{
    // x_tree is name, y_tree is signal
    self(y_tree);
}

/**
 * @brief Visits a signal tree node and recursively compiles its value.
 *
 * This method implements the core compiler logic for the
 * signal graph. It uses a recursive traversal to process each node type,
 * compiles its sub-expressions, and produce the resulting FIR value. The
 * intermediate results are stored on a value stack (`fValueStack`).
 *
 * The method supports a wide variety of Faust signal constructs, including:
 * - Constants (integer, real)
 * - Inputs and outputs
 * - Delay lines and feedback structures
 * - Control structures (sliders, buttons, bargraphs)
 * - Mathematical operations (binary operators, conditional expressions)
 * - Table-based operations (read/write table)
 * - Recursive signals and projections
 *
 * Key implementation notes:
 * - For each recognized node type, it performs the appropriate compilation logic
 * and pushes the result onto the value stack.
 * - For recursive signals (e.g., projections), it uses the `fVisited` map to
 * detect cycles and avoid infinite recursion.
 * - It handles the compilation of user interface controls by compilation loding values
 * from `fInputControls` and updating `fOutputControls`.
 * - For unimplemented or unrecognized nodes, it triggers an assertion failure
 * to ensure correctness.
 *
 * @param sig The signal tree node to compile.
 */
void SignalFIRCompiler::visit(Tree sig)
{
    int     i_val;
    int64_t i64_val;
    double  r_val;
    Tree    size_tree, gen_tree, wi_tree, ws_tree, tbl_tree, ri_tree;
    Tree    c_tree, x_tree, y_tree, z_tree;
    Tree    label_tree, type_tree, name_tree, file_tree, sf_tree, sel;
    Tree    rec_vars, rec_exprs;
    int     opt_op;
    int     proj_idx;

    /*
     if (global::isDebug("SIG_RENDERER")) {
     std::cout << "SignalFIRCompiler : " << ppsig(sig, 64) << std::endl;
     std::cout << "SignalFIRCompiler : fIOTA " << fIOTA << std::endl;
     }
     */

    if (xtended* xt = (xtended*)getUserData(sig)) {
        compileXtended(sig, xt);
    } else if (isSigInt(sig, &i_val)) {
        compileSigInt(sig, i_val);
    } else if (isSigInt64(sig, &i64_val)) {
        compileSigInt64(sig, i64_val);
    } else if (isSigReal(sig, &r_val)) {
        compileSigReal(sig, r_val);
    } else if (isSigInput(sig, &i_val)) {
        compileSigInput(sig, i_val);
    } else if (isSigOutput(sig, &i_val, x_tree)) {
        compileSigOutput(sig, i_val, x_tree);
    } else if (isSigDelay1(sig, x_tree)) {
        compileSigDelay1(sig, x_tree);
    } else if (isSigDelay(sig, x_tree, y_tree)) {
        compileSigDelay(sig, x_tree, y_tree);
    } else if (isSigSelect2(sig, sel, x_tree, y_tree)) {
        compileSigSelect2(sig, sel, x_tree, y_tree);
    } else if (isSigPrefix(sig, x_tree, y_tree)) {
        compileSigPrefix(sig, x_tree, y_tree);
    } else if (isSigBinOp(sig, &opt_op, x_tree, y_tree)) {
        compileSigBinOp(sig, opt_op, x_tree, y_tree);
    } else if (isSigFConst(sig, type_tree, name_tree, file_tree)) {
        compileSigFConst(sig, type_tree, name_tree, file_tree);
    } else if (isSigWRTbl(sig, size_tree, gen_tree, wi_tree, ws_tree)) {
        compileSigWRTbl(sig, size_tree, gen_tree, wi_tree, ws_tree);
    } else if (isSigRDTbl(sig, tbl_tree, ri_tree)) {
        compileSigRDTbl(sig, tbl_tree, ri_tree);
    } else if (isSigGen(sig, x_tree)) {
        compileSigGen(sig, x_tree);
    } else if (isSigWaveform(sig)) {
        compileSigWaveform(sig);
    } else if (isProj(sig, &proj_idx, x_tree) && isRec(x_tree, rec_vars, rec_exprs)) {
        compileProjRec(sig, proj_idx, x_tree, rec_vars, rec_exprs);
    } else if (isSigIntCast(sig, x_tree)) {
        compileSigIntCast(sig, x_tree);
    } else if (isSigBitCast(sig, x_tree)) {
        compileSigBitCast(sig, x_tree);
    } else if (isSigFloatCast(sig, x_tree)) {
        compileSigFloatCast(sig, x_tree);
    } else if (isSigButton(sig, label_tree)) {
        compileSigButton(sig, label_tree);
    } else if (isSigCheckbox(sig, label_tree)) {
        compileSigCheckbox(sig, label_tree);
    } else if (isSigVSlider(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) {
        compileSigVSlider(sig, label_tree, c_tree, x_tree, y_tree, z_tree);
    } else if (isSigHSlider(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) {
        compileSigHSlider(sig, label_tree, c_tree, x_tree, y_tree, z_tree);
    } else if (isSigNumEntry(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) {
        compileSigNumEntry(sig, label_tree, c_tree, x_tree, y_tree, z_tree);
    } else if (isSigVBargraph(sig, label_tree, x_tree, y_tree, z_tree)) {
        compileSigVBargraph(sig, label_tree, x_tree, y_tree, z_tree);
    } else if (isSigHBargraph(sig, label_tree, x_tree, y_tree, z_tree)) {
        compileSigHBargraph(sig, label_tree, x_tree, y_tree, z_tree);
    } else if (isSigSoundfile(sig, label_tree)) {
        compileSigSoundfile(sig, label_tree);
    } else if (isSigSoundfileLength(sig, sf_tree, x_tree)) {
        compileSigSoundfileLength(sig, sf_tree, x_tree);
    } else if (isSigSoundfileRate(sig, sf_tree, x_tree)) {
        compileSigSoundfileRate(sig, sf_tree, x_tree);
    } else if (isSigSoundfileBuffer(sig, sf_tree, x_tree, y_tree, z_tree)) {
        compileSigSoundfileBuffer(sig, sf_tree, x_tree, y_tree, z_tree);
    } else if (isSigAttach(sig, x_tree, y_tree)) {
        compileSigAttach(sig, x_tree, y_tree);
    } else if (isSigEnable(sig, x_tree, y_tree)) {
        compileSigEnable(sig, x_tree, y_tree);
    } else if (isSigControl(sig, x_tree, y_tree)) {
        compileSigControl(sig, x_tree, y_tree);
    } else {
        // Default case and recursion
        SignalVisitor::visit(sig);
    }
}

/**
 * @brief Compile the DSP graph for all output signals.
 *
 * This method traverses the list of DSP output signals (`fOutputSig`),
 * compiles each one into a `ValueInst*`, and emits the corresponding
 * store statements into the generated DSP code.
 *
 * Workflow:
 * 1. Clears the `fVisited` set to ensure each signal is compiled only once.
 * 2. Iterates through the list of output signals.
 * 3. For each signal:
 * - Invokes `self(out_sig)` to recursively compile the signal graph.
 * - Retrieves the resulting compiled value from the stack (`popRes()`).
 * - Generates a `StoreVar` instruction to write the computed value to
 * an output slot, applying the appropriate type casting if necessary.
 * 4. Appends the generated statement to the correct DSP block via `writeStatement`.
 *
 * @note Each output is stored in a stack variable named `"output"` with a unique ID.
 * @note This function is responsible for compiling only output signals; inputs and
 * intermediate nodes are compiled as part of the recursive traversal.
 */
void SignalFIRCompiler::compile()
{
    Tree output_list = fOutputSig;
    fVisited.clear();  // Clear visited for each top-level signal evaluation per sample

    while (!isNil(output_list)) {
        // Compile each output
        Tree out_sig = hd(output_list);
        // std::cerr << "compile " << ppsig(out_sig) << std::endl;
        self(out_sig);
        // Get compiled value and store in the output
        ValueInst* res = popRes();
        writeStatement(out_sig, IB::genStoreArrayFunArgsVar(
                                    gGlobal->getFreshID("output"), IB::genLoadLoopVar("sample"),
                                    genCastedOutput(getCertifiedSigType(out_sig)->nature(), res)));
        // Compile next output
        output_list = tl(output_list);
    }

    // fIOTA is used in delays lines
    fSampleBlock->pushBackInst(IB::genStoreStructVar("fIOTA", (FIRIndex(loadIOTA()) + 1)));

    // Close UI block
    fUIBlock->pushBackInst(IB::genCloseboxInst());
}

/**
 * @brief Initializes lookup tables used in the signal graph.
 *
 * This method precomputes all lookup tables (both integer and real-valued)
 * that are defined in the signal expression. It ensures that any table-based
 * signals are filled with their corresponding precomputed values before
 * rendering begins.
 *
 * Implementation details:
 * - Enables the generator flag (`fVisitGen = true`) to allow recursive
 * evaluation of table-generating signals.
 * - Iterates over all integer tables (`fTables`) and computes their
 * contents using `compileSample`.
 * - Resets the generator flag (`fVisitGen = false`) once table initialization
 * is complete.
 *
 * This method must be called once before starting processing
 * to ensure that all table-based signals are correctly initialized.
 */

// TODO: use sub modules
void SignalFIRCompiler::compileTables()
{
    // So that sigGen are properly visited
    fVisitGen = true;

    // Tables
    for (auto& [x, table] : fTables) {
        int          nature = getCertifiedSigType(x)->nature();  // Nature of the signal generator
        std::string  loop_index = (nature == kInt) ? "i_loop" : "r_loop";
        ForLoopInst* loop       = IB::genForLoopInst(loop_index, 0, table.size(), 1);
        ValueInst*   val        = compileSample(table.fSigGen);
        loop->pushFrontInst(table.write(IB::genLoadLoopVar(loop_index), val));

        // Register loop in init block
        fInitBlock->pushFrontInst(loop);
    }

    /*
     // Initialize waveform tables
     for (auto& it : fWaveforms) {
         const Tree& w_sig = it.first;
         TableData& table = it.second;

         // Create a loop to fill the table with waveform samples
         std::string  loop_index = "w_loop";
         ForLoopInst* loop       = IB::genForLoopInst(loop_index, table.size(), 1);

         for (int i = 0; i < table.fSize; i++) {
             // Compile each waveform sample at index i
             ValueInst* value = compileSample(w_sig->branch(i));
             loop->pushBackInst(table.write(IB::genInt32NumInst(i), value));
         }

         // Register loop in init block
         fInitBlock->pushBackInst(loop);
     }
     */

    fVisitGen = false;
}

/**
 * @brief Generates a FIR DSP module instance.
 *
 * This function creates and configures a new `ModuleInst` representing
 * a complete DSP module for FIR signal processing. It sets up all the
 * required functions for:
 * - Input/output management
 * - Sample rate access
 * - Initialization and state reset
 * - DSP compute routine
 *
 * The generated module is fully self-contained and ready for integration
 * into the DSP runtime.
 *
 * @return A pointer to the newly created FIR module.
 */
ModuleInst* SignalFIRCompiler::genFIRModule(const std::string& obj)
{
    // Compile tables
    compileTables();
    // Compile outputs signals to FIR
    compile();

    // Create the FIR module using the generated FIR blocks
    ModuleInst* fir_module = IB::genModuleInst(fModuleName, fDeclareBlock, fGlobalBlock);

    // Metadata
    fir_module->pushFunction(IB::generateMetadata("metadata", obj, true, true, fMetadataBlock));

    // Inputs/outputs
    fir_module->pushFunction(
        IB::generateGetInputs("getNumInputs", obj, true, FunTyped::kDefault, fNumInputs));
    fir_module->pushFunction(
        IB::generateGetInputs("getNumOutputs", obj, true, FunTyped::kDefault, fNumOutputs));

    // SampleRate
    fir_module->pushFunction(IB::generateGetSampleRate("getSampleRate", obj, true, true));

    // Init
    fir_module->pushFunction(IB::generateInit("init", obj, true, true));
    fir_module->pushFunction(IB::generateClassInit("classInit", obj, true, true, fTablesBlock));
    fir_module->pushFunction(IB::generateInstanceInit("instanceInit", obj, true, true));
    fir_module->pushFunction(
        IB::generateInstanceConstants("instanceConstants", obj, true, true, fInitBlock));
    fir_module->pushFunction(IB::generateInstanceResetUserInterface("instanceResetUserInterface",
                                                                    obj, true, true, fResetBlock));
    fir_module->pushFunction(
        IB::generateInstanceClear("instanceClear", obj, true, true, fClearBlock));

    // User Interface
    fir_module->pushFunction(
        IB::generateBuildUserInterace("buildUserInterface", obj, true, true, fUIBlock));

    // Clone
    fir_module->pushFunction(IB::generateClone("clone", fModuleName, true, true));

    // Compute
    Typed* type     = IB::genFloatMacroTyped();
    Typed* ptr_type = IB::genArrayTyped(type, 0);

    for (int index = 0; index < fNumInputs; index++) {
        string name = subst("input$0", T(index));
        fControlBlock->pushFrontInst(IB::genDecStackVar(
            name, ptr_type, IB::genLoadArrayFunArgsVar("inputs", IB::genInt32NumInst(index))));
    }
    for (int index = 0; index < fNumOutputs; index++) {
        string name = subst("output$0", T(index));
        fControlBlock->pushFrontInst(IB::genDecStackVar(
            name, ptr_type, IB::genLoadArrayFunArgsVar("outputs", IB::genInt32NumInst(index))));
    }

    fir_module->pushFunction(
        IB::generateComputeFun("compute", obj, true, true, fControlBlock, fSampleBlock));

    return fir_module;
}