File: signalRenderer.cpp

package info (click to toggle)
faust 2.81.10%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 431,496 kB
  • sloc: cpp: 283,941; ansic: 116,215; javascript: 18,529; sh: 14,356; vhdl: 14,052; java: 5,900; python: 5,091; objc: 3,852; makefile: 2,725; cs: 1,672; lisp: 1,146; ruby: 954; yacc: 586; xml: 471; lex: 247; awk: 111; tcl: 26
file content (512 lines) | stat: -rw-r--r-- 18,935 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
/************************************************************************
 ************************************************************************
 FAUST compiler
 Copyright (C) 2024 GRAME, Centre National de Creation Musicale
 ---------------------------------------------------------------------
 This program is free software; you can redistribute it and/or modify
 it under the terms of the GNU Lesser General Public License as published by
 the Free Software Foundation; either version 2.1 of the License, or
 (at your option) any later version.

 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU Lesser General Public License for more details.

 You should have received a copy of the GNU Lesser General Public License
 along with this program; if not, write to the Free Software
 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 ************************************************************************
 ************************************************************************/

#include "signalRenderer.hh"
#include "compatibility.hh"  // For basename, pathToContent
#include "xtended.hh"

#include <iostream>
#include <string>
#include <vector>

using namespace std;

//-------------------------SignalRenderer-------------------------------
//
// SignalRenderer is designed to directly render signals, bypassing the traditional
// compilation phase.
//
// Execution Flow. The interpretation process is divided into two main stages:
//
// 1) Preparation Stage (SignalBuilder). The SignalBuilder class traverses all output signal trees
// to:
//      - Allocate delay lines (both integer and REAL types) for sample-accurate delays and
//      recursive constructs.
//      - Allocate tables (both integer and real types) required for table-based signal generation.
//      - Collect and configure input and output control signals (e.g., sliders, buttons,
//      bargraphs).
//
// 2) Rendering Stage (SignalRenderer). The SignalRenderer class:
//      - Traverses all output signal trees.
//      - Computes the value of each output signal sample by recursively interpreting the expression
//      tree.
//      - Uses a value stack to manage intermediate results.
//
// Table Initialization:
//
// After SignalBuilder has prepared the signal trees, the tables are precomputed once during
// the initialization phase via the `initTables` method. This ensures efficient table lookup during
// rendering.
//
// Sample Computation. For each audio sample:
//      - The interpreter starts from the output signal tree and recursively traverses the
//        graph back to its inputs (audio inputs and control signals).
//      - Recursion is handled once per sample using the fVisited variable to prevent cycles.
//
// Integration with DSP Factory:
//
// The SignalRenderer class is wrapped by `signal_dsp_factory` and `signal_dsp` classes,
// enabling integration with the existing DSP backends used in Faust (e.g., LLVM or Interp).
// This allows seamless reuse of user interfaces and other DSP features.
//----------------------------------------------------------------------

template <class REAL>
int signal_dsp_aux<REAL>::getNumInputs()
{
    return fRenderer.fNumInputs;
}

template <class REAL>
int signal_dsp_aux<REAL>::getNumOutputs()
{
    return fRenderer.fNumOutputs;
}

template <class REAL>
void signal_dsp_aux<REAL>::compute(int count, FAUSTFLOAT** inputs, FAUSTFLOAT** outputs)
{
    fRenderer.compute(count, inputs, outputs);
}

/**
 * @brief Computes and renders audio samples for a block of output signals.
 *
 * This method performs the rendering loop of the signal interpreter.
 * It processes a block of audio samples by traversing the output signal tree,
 * computing each sample value recursively, and writing the result to the
 * appropriate output channel.
 *
 * Core steps:
 * 1. Sets the input pointer (`fInputs`) for use during recursive evaluation.
 * 2. Iterates over each sample in the block (sample index `fSample`).
 * 3. For each output signal, recursively evaluates the expression tree
 *    using `self()`, retrieving the computed value from the stack.
 * 4. Determines whether the result is an integer or a real value
 *    and writes it to the correct output channel.
 * 5. Increments the shared index counter (`fIOTA`) used for delay lines
 *    and waveforms.
 *
 * Implementation details:
 * - Clears the `fVisited` map at the start of each sample to ensure correct
 *   handling of recursive signals and avoid cyclic evaluations.
 * - Supports both integer and REAL output signals, allowing mixed-type
 *   outputs depending on the signal graph.
 *
 * @param count The number of samples to process in the current block.
 * @param inputs The input signal buffers (audio and control signals).
 * @param outputs The output signal buffers.
 */
template <class REAL>
void SignalRenderer<REAL>::compute(int count, FAUSTFLOAT** inputs, FAUSTFLOAT** outputs)
{
    fInputs = inputs;

    for (fSample = 0; fSample < count; fSample++) {
        int  chan        = 0;
        Tree output_list = fOutputSig;

        fVisited.clear();  // Clear visited for each top-level signal evaluation per sample

        while (!isNil(output_list)) {
            // Render each output in 'chan'
            Tree out_sig = hd(output_list);
            self(out_sig);
            // Get the result which can contain an integer or REAL value
            Node res = popRes();
            int  int_val;
            if (isInt(res, &int_val)) {
                outputs[chan++][fSample] = static_cast<FAUSTFLOAT>(res.getInt());
            } else {
                outputs[chan++][fSample] = static_cast<FAUSTFLOAT>(res.getDouble());
            }
            // Render next output
            output_list = tl(output_list);
        }

        // Increment the delay lines and waveforms shared index
        fIOTA++;
    }
}

/**
 * @brief Visits a signal tree node and recursively evaluates its value.
 *
 * This method implements the core interpreter logic for rendering the
 * signal graph. It uses a recursive traversal to process each node type,
 * evaluates its sub-expressions, and computes the resulting value. The
 * intermediate results are stored on a value stack (`fValueStack`).
 *
 * The method supports a wide variety of Faust signal constructs, including:
 * - Constants (integer, real)
 * - Inputs and outputs
 * - Delay lines and feedback structures
 * - Control structures (sliders, buttons, bargraphs)
 * - Mathematical operations (binary operators, conditional expressions)
 * - Table-based operations (read/write table)
 * - Recursive signals and projections
 *
 * Key implementation notes:
 * - For each recognized node type, it performs the appropriate evaluation logic
 *   and pushes the result onto the value stack.
 * - For recursive signals (e.g., projections), it uses the `fVisited` map to
 *   detect cycles and avoid infinite recursion.
 * - It handles the evaluation of user interface controls by reading values
 *   from `fInputControls` and updating `fOutputControls`.
 * - For unimplemented or unrecognized nodes, it triggers an assertion failure
 *   to ensure correctness.
 *
 * @param sig The signal tree node to evaluate.
 */
template <class REAL>
void SignalRenderer<REAL>::visit(Tree sig)
{
    int     i_val;
    int64_t i64_val;
    double  r_val;
    Tree    size_tree, gen_tree, wi_tree, ws_tree, tbl_tree, ri_tree;
    Tree    c_tree, x_tree, y_tree, z_tree;
    Tree    label_tree, type_tree, name_tree, file_tree, sf_tree, sel;
    Tree    rec_vars, rec_exprs;
    int     opt_op;
    int     proj_idx;  // For isProj

    /*
    if (global::isDebug("SIG_RENDERER")) {
        std::cout << "SignalRenderer : " << ppsig(sig, 64) << std::endl;
        std::cout << "SignalRenderer : fIOTA " << fIOTA << std::endl;
    }
    */

    if (xtended* xt = (xtended*)getUserData(sig)) {
        vector<Node> args;
        // Interpret all arguments then call the function
        for (Tree b : sig->branches()) {
            self(b);
            args.push_back(popRes());
        }
        Node res = xt->compute(args);
        //  HACK: for 'min/max' res may actually be of type kInt
        int ty = getCertifiedSigType(sig)->nature();
        pushRes((ty == kInt) ? Node(int(res.getDouble())) : res);
    } else if (isSigInt(sig, &i_val)) {
        pushRes(i_val);
    } else if (isSigInt64(sig, &i64_val)) {
        pushRes(i64_val);
    } else if (isSigReal(sig, &r_val)) {
        pushRes(r_val);
    } else if (isSigInput(sig, &i_val)) {
        pushRes(fInputs[i_val][fSample]);
    } else if (isSigOutput(sig, &i_val, x_tree)) {
        self(x_tree);  // Evaluate the expression connected to the output
    } else if (isSigDelay1(sig, x_tree)) {
        self(x_tree);
        Node v1  = popRes();
        Node one = Node(1);
        pushRes(writeReadDelay(x_tree, v1, one));

    } else if (isSigDelay(sig, x_tree, y_tree)) {
        if (isZeroDelay(y_tree)) {
            self(x_tree);
        } else {
            self(x_tree);
            Node v1 = popRes();
            self(y_tree);
            Node v2 = popRes();
            pushRes(writeReadDelay(x_tree, v1, v2));
        }
    } else if (isSigSelect2(sig, sel, x_tree, y_tree)) {
        // Interpret the condition and both branches
        self(sel);
        Node sel_val = popRes();
        self(x_tree);
        Node x_val = popRes();
        self(y_tree);
        Node y_val = popRes();
        // Inverted
        if (sel_val.getInt()) {
            pushRes(y_val);
        } else {
            pushRes(x_val);
        }
    } else if (isSigPrefix(sig, x_tree, y_tree)) {
        self(y_tree);
        if (fIOTA == 0) {
            self(x_tree);
        }
    } else if (isSigBinOp(sig, &opt_op, x_tree, y_tree)) {
        self(x_tree);
        Node v1 = popRes();
        self(y_tree);
        Node v2 = popRes();

        Type x_type = getCertifiedSigType(x_tree);
        Type y_type = getCertifiedSigType(y_tree);

        // Integer binop when both arguments are integer
        if (x_type->nature() == kInt && y_type->nature() == kInt) {
            pushRes(gBinOpTable[opt_op]->compute(v1.getInt(), v2.getInt()));
        } else {
            // Otherwise REAL binop
            pushRes(gBinOpTable[opt_op]->compute(v1.getDouble(), v2.getDouble()));
        }
    } else if (isSigFConst(sig, type_tree, name_tree, file_tree)) {
        // Special case for SR constant
        if (string(tree2str(name_tree)) == "fSamplingFreq") {
            pushRes(fSampleRate);
        } else {
            // TODO
            faustassert(false);
            pushRes(Node(0));
        }
    } else if (isSigWRTbl(sig, size_tree, gen_tree, wi_tree, ws_tree)) {
        if (isNil(wi_tree)) {
            // Nothing
        } else {
            // Interpret write signal
            self(wi_tree);
            // Then read its content
            Node write_idx = popRes();
            self(ws_tree);
            Node val_node = popRes();
            writeTable(sig, write_idx, val_node);
        }
    } else if (isSigRDTbl(sig, tbl_tree, ri_tree)) {
        // Interpret table
        self(tbl_tree);
        // Then read its content
        self(ri_tree);
        Node read_idx = popRes();
        pushRes(readTable(tbl_tree, read_idx));
    } else if (isSigGen(sig, x_tree)) {
        if (fVisitGen) {
            self(x_tree);
        } else {
            pushRes(Node(0));
        }
    } else if (isSigWaveform(sig)) {
        // Modulo based access in the waveform
        int size  = sig->arity();
        int index = fIOTA % size;
        self(sig->branch(index));
    } else if (isProj(sig, &proj_idx, x_tree) && isRec(x_tree, rec_vars, rec_exprs)) {
        // First visit of the recursive signal
        if (fVisited.find(sig) == fVisited.end()) {
            faustassert(isRec(x_tree, rec_vars, rec_exprs));
            fVisited[sig]++;
            // Render the actual projection
            self(nth(rec_exprs, proj_idx));
            Node res = popRes();
            /*
            if (global::isDebug("SIG_RENDERER")) {
                std::cout << "Proj : " << res << "\n";
            }
            */
            Node zero = Node(0);
            pushRes(writeReadDelay(sig, res, zero));

        } else {
            /*
            if (global::isDebug("SIG_RENDERER")) {
                std::cout << "SignalRenderer : next visit of the recursive signal\n";
            }
            */
            Node zero = Node(0);
            pushRes(readDelay(sig, zero));
        }
    } else if (isSigIntCast(sig, x_tree)) {
        self(x_tree);
        Node cur = popRes();
        pushRes(static_cast<int>(cur.getDouble()));
    } else if (isSigBitCast(sig, x_tree)) {
        // Bitcast is complex. For a simple renderer, it might be an identity if types are
        // "close enough" or a reinterpretation of bits (e.g., float bits as int). This renderer
        // doesn't have type info readily on Node to do a true bitcast. Assuming it's a numeric
        // pass-through for now.
        self(x_tree);
    } else if (isSigFloatCast(sig, x_tree)) {
        self(x_tree);
        Node cur = popRes();
        pushRes(static_cast<REAL>(cur.getInt()));
    } else if (isSigButton(sig, label_tree)) {
        pushRes(fInputControls[sig].getValue());
    } else if (isSigCheckbox(sig, label_tree)) {
        pushRes(fInputControls[sig].getValue());
    } else if (isSigVSlider(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) {
        pushRes(fInputControls[sig].getValue());
    } else if (isSigHSlider(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) {
        pushRes(fInputControls[sig].getValue());
    } else if (isSigNumEntry(sig, label_tree, c_tree, x_tree, y_tree, z_tree)) {
        pushRes(fInputControls[sig].getValue());
    } else if (isSigVBargraph(sig, label_tree, x_tree, y_tree, z_tree)) {
        self(z_tree);
        Node val = topRes();
        fOutputControls[sig].setValue(val.getDouble());
    } else if (isSigHBargraph(sig, label_tree, x_tree, y_tree, z_tree)) {
        self(z_tree);
        Node val = topRes();
        fOutputControls[sig].setValue(val.getDouble());
    } else if (isSigSoundfile(sig, label_tree)) {
        // TODO: Implement soundfile reading. Requires state management for file handlers,
        // position, etc.
        pushRes(Node(0));
    } else if (isSigSoundfileLength(sig, sf_tree, x_tree)) {
        // TODO
        self(sf_tree);
        popRes();
        self(x_tree);
        popRes();
        pushRes(Node(0));
    } else if (isSigSoundfileRate(sig, sf_tree, x_tree)) {
        // TODO
        self(sf_tree);
        popRes();
        self(x_tree);
        popRes();
        pushRes(Node(0));
    } else if (isSigSoundfileBuffer(sig, sf_tree, x_tree, y_tree, z_tree)) {
        // TODO
        self(sf_tree);
        popRes();
        self(x_tree);
        popRes();
        self(y_tree);
        popRes();
        self(z_tree);
        popRes();
        pushRes(Node(0));
    } else if (isSigAttach(sig, x_tree, y_tree)) {
        // Interpret second arg then drop it
        self(y_tree);
        popRes();
        // And return the first one
        self(x_tree);
    } else if (isSigEnable(sig, x_tree, y_tree)) {  // x_tree is condition, y_tree is signal
        self(x_tree);
        Node enable = popRes();
        if (enable.getInt() != 0) {
            self(y_tree);
        } else {
            pushRes(Node(0));
        }
    } else if (isSigControl(sig, x_tree, y_tree)) {  // x_tree is name, y_tree is signal
        self(y_tree);
    } else {
        // Default case and recursion
        SignalVisitor::visit(sig);
    }
}

// Needed functions
Tree DSPToBoxes(const string& name_app, const string& dsp_content, int argc, const char* argv[],
                int* inputs, int* outputs, string& error_msg);

tvec boxesToSignals(Tree box, string& error_msg);

extern "C" void createLibContext();
extern "C" void destroyLibContext();

// Explicit template instantiations
template struct SignalRenderer<float>;
template struct SignalRenderer<double>;
template struct signal_dsp_aux<float>;
template struct signal_dsp_aux<double>;

// External API

/*
 Since the compilation/interpretation context is global, a UNIQUE factory can be created.
 The context has to be be kept until the factory destroys it in deleteSignalDSPFactory.
 */
signal_dsp_factory* createSignalDSPFactoryFromString(const string& name_app,
                                                     const string& dsp_content, int argc,
                                                     const char* argv[], string& error_msg)
{
    createLibContext();

    class SignalPrefix : public SignalIdentity {
       public:
        SignalPrefix() : SignalIdentity() {}

       protected:
        virtual Tree transformation(Tree sig)
        {
            Tree x, y;
            if (isSigPrefix(sig, x, y)) {
                return sigPrefix(self(x), sigDelay1(self(y)));
            } else {
                // Other cases => identity transformation
                return SignalIdentity::transformation(sig);
            }
        }
    };

    try {
        // Using the DSP to Box API
        int  inputs = 0, outputs = 0;
        Tree box = DSPToBoxes(name_app, dsp_content, argc, argv, &inputs, &outputs, error_msg);
        if (!box) {
            goto error;
        }
        // Then the Box to Signal API
        tvec signals = boxesToSignals(box, error_msg);
        if (signals.empty()) {
            goto error;
        }

        // Rewrite prefix trees
        Tree         res = listConvert(signals);
        SignalPrefix SP;
        res = SP.mapself(res);
        typeAnnotation(res, gGlobal->gLocalCausalityCheck);

        // Context has to be kept until destroyed in deleteSignalDSPFactory
        return new signal_dsp_factory(inputs, outputs, res, argc, argv);
    } catch (faustexception& e) {
        error_msg = e.Message();
    }

error:
    destroyLibContext();
    return nullptr;
}

signal_dsp_factory* createSignalDSPFactoryFromFile(const string& filename, int argc,
                                                   const char* argv[], string& error_msg)
{
    string base = basename((char*)filename.c_str());
    size_t pos  = filename.find(".dsp");

    if (pos != string::npos) {
        return createSignalDSPFactoryFromString(base.substr(0, pos), pathToContent(filename), argc,
                                                argv, error_msg);
    } else {
        error_msg = "ERROR : file extension is not the one expected (.dsp expected)\n";
        return nullptr;
    }
}

bool deleteSignalDSPFactory(signal_dsp_factory* factory)
{
    delete factory;
    // Context is destroyed, a new factory can possibly be created...
    destroyLibContext();
    return true;
}