1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406 3407 3408 3409 3410 3411 3412 3413 3414 3415 3416 3417 3418 3419 3420 3421 3422 3423 3424 3425 3426 3427 3428 3429 3430 3431 3432 3433 3434 3435 3436 3437 3438 3439 3440 3441 3442 3443 3444 3445 3446 3447 3448 3449 3450 3451 3452 3453 3454 3455 3456 3457 3458 3459 3460 3461 3462 3463 3464 3465 3466 3467 3468 3469 3470 3471 3472 3473 3474 3475 3476 3477 3478 3479 3480 3481 3482 3483 3484 3485 3486 3487 3488 3489 3490 3491 3492 3493 3494 3495 3496 3497 3498 3499 3500 3501 3502 3503 3504 3505 3506 3507 3508 3509 3510 3511 3512 3513 3514 3515 3516 3517 3518 3519 3520 3521 3522 3523 3524 3525 3526 3527 3528 3529 3530 3531 3532 3533 3534 3535 3536 3537 3538 3539 3540 3541 3542 3543 3544 3545 3546 3547 3548 3549 3550 3551 3552 3553 3554 3555 3556 3557 3558 3559 3560 3561 3562 3563 3564 3565 3566 3567 3568 3569 3570 3571 3572 3573 3574 3575 3576 3577 3578 3579 3580 3581 3582 3583 3584 3585 3586 3587 3588 3589 3590 3591 3592 3593 3594 3595 3596 3597 3598 3599 3600 3601 3602 3603 3604 3605 3606 3607 3608 3609 3610 3611 3612 3613 3614 3615 3616 3617 3618 3619 3620 3621 3622 3623 3624 3625 3626 3627 3628 3629 3630 3631 3632 3633 3634 3635 3636 3637 3638 3639 3640 3641 3642 3643 3644 3645 3646 3647 3648 3649 3650 3651 3652 3653 3654 3655 3656 3657 3658 3659 3660 3661 3662 3663 3664 3665 3666 3667 3668 3669 3670 3671 3672 3673 3674 3675 3676 3677 3678 3679 3680 3681 3682 3683 3684 3685 3686 3687 3688 3689 3690 3691 3692 3693 3694 3695 3696 3697 3698 3699 3700 3701 3702 3703
|
//##################################### filters.lib ########################################
// Filters library. Its official prefix is `fi`.
//
// The Filters library is organized into 23 sections:
//
// * [Basic Filters](#basic-filters)
// * [Comb Filters](#comb-filters)
// * [Direct-Form Digital Filter Sections](#direct-form-digital-filter-sections)
// * [Direct-Form Second-Order Biquad Sections](#direct-form-second-order-biquad-sections)
// * [Ladder/Lattice Digital Filters](#ladderlattice-digital-filters)
// * [Useful Special Cases](#useful-special-cases)
// * [Ladder/Lattice Allpass Filters](#ladderlattice-allpass-filters)
// * [Digital Filter Sections Specified as Analog Filter Sections](#digital-filter-sections-specified-as-analog-filter-sections)
// * [Simple Resonator Filters](#simple-resonator-filters)
// * [Butterworth Lowpass/Highpass Filters](#butterworth-lowpasshighpass-filters)
// * [Special Filter-Bank Delay-Equalizing Allpass Filters](#special-filter-bank-delay-equalizing-allpass-filters)
// * [Elliptic (Cauer) Lowpass Filters](#elliptic-cauer-lowpass-filters)
// * [Elliptic Highpass Filters](#elliptic-highpass-filters)
// * [Butterworth Bandpass/Bandstop Filters](#butterworth-bandpassbandstop-filters)
// * [Elliptic Bandpass Filters](#elliptic-bandpass-filters)
// * [Parametric Equalizers (Shelf, Peaking)](#parametric-equalizers-shelf-peaking)
// * [Mth-Octave Filter-Banks](#mth-octave-filter-banks)
// * [Arbitrary-Crossover Filter-Banks and Spectrum Analyzers](#arbitrary-crossover-filter-banks-and-spectrum-analyzers)
// * [State Variable Filters (SVF)](#state-variable-filters)
// * [Linkwitz-Riley 4th-order 2-way, 3-way, and 4-way crossovers](#linkwitz-riley-4th-order-2-way-3-way-and-4-way-crossovers)
// * [Standardized Filters](#standardized-filters)
// * [Averaging Functions](#averaging-functions)
// * [Kalman Filters](#kalman-filters)
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/filters.lib>
//
//########################################################################################
// NOTE ABOUT LICENSES:
// Each function in this library has its own license. Licenses are declared
// before each function. Corresponding license terms can be found at the
// bottom of this file or in the Faust libraries documentation.
ma = library("maths.lib");
ba = library("basics.lib");
ro = library("routes.lib");
de = library("delays.lib");
an = library("analyzers.lib");
ef = library("misceffects.lib");
si = library("signals.lib");
fi = library("filters.lib"); // for compatible copy/paste out of this file
la = library("linearalgebra.lib");
declare name "Faust Filters Library";
declare version "1.7.1";
//===============================Basic Filters============================================
//========================================================================================
//----------------------`(fi.)zero`--------------------------
// One zero filter. Difference equation: \(y(n) = x(n) - zx(n-1)\).
//
// #### Usage
//
// ```
// _ : zero(z) : _
// ```
//
// Where:
//
// * `z`: location of zero along real axis in z-plane
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/filters/One_Zero.html>
//----------------------------------------------------------
declare zero author "Julius O. Smith III";
declare zero copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare zero license "MIT-style STK-4.3 license";
zero(z) = _ <: _,mem : _,*(z) : -;
//------------------------`(fi.)pole`---------------------------
// One pole filter. Could also be called a "leaky integrator".
// Difference equation: \(y(n) = x(n) + py(n-1)\).
//
// #### Usage
//
// ```
// _ : pole(p) : _
// ```
//
// Where:
//
// * `p`: pole location = feedback coefficient
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/filters/One_Pole.html>
//------------------------------------------------------------
declare pole author "Julius O. Smith III";
declare pole copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare pole license "MIT-style STK-4.3 license";
pole(p) = + ~ *(p);
//----------------------`(fi.)integrator`--------------------------
// Same as `pole(1)` [implemented separately for block-diagram clarity].
//------------------------------------------------------------
declare integrator author "Julius O. Smith III";
declare integrator copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare integrator license "MIT-style STK-4.3 license";
integrator = + ~ _;
//-------------------`(fi.)dcblockerat`-----------------------
// DC blocker with configurable "break frequency".
// The amplitude response is substantially flat above `fb`,
// and sloped at about +6 dB/octave below `fb`.
// Derived from the analog transfer function:
// $$H(s) = \frac{s}{(s + 2 \pi f_b)}$$
// (which can be seen as a 1st-order Butterworth highpass filter)
// by the low-frequency-matching bilinear transform method
// (i.e., using the typical frequency-scaling constant `2*SR`).
//
// #### Usage
//
// ```
// _ : dcblockerat(fb) : _
// ```
//
// Where:
//
// * `fb`: "break frequency" in Hz, i.e., -3 dB gain frequency (see 2nd reference below)
//
// #### References
// * <https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html>
// * <https://ccrma.stanford.edu/~jos/spectilt/Bode_Plots.html>
//------------------------------------------------------------
declare dcblockerat author "Julius O. Smith III";
declare dcblockerat copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare dcblockerat license "MIT-style STK-4.3 license";
dcblockerat(fb) = *(b0) : zero(1) : pole(p)
with {
wn = ma.PI*fb/ma.SR;
b0 = 1.0 / (1 + wn);
p = (1 - wn) * b0;
};
//----------------------`(fi.)dcblocker`--------------------------
// DC blocker. Default dc blocker has -3dB point near 35 Hz (at 44.1 kHz)
// and high-frequency gain near 1.0025 (due to no scaling).
// `dcblocker` is as standard Faust function.
//
// #### Usage
//
// ```
// _ : dcblocker : _
// ```
//------------------------------------------------------------
declare dcblocker author "Julius O. Smith III";
declare dcblocker copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare dcblocker license "MIT-style STK-4.3 license";
dcblocker = zero(1) : pole(0.995);
//----------------------------`(fi.)lptN`--------------------------------------
// One-pole lowpass filter with arbitrary dis/charging factors set in dB and
// times set in seconds.
//
// #### Usage
//
// ```
// _ : lptN(N, tN) : _
// ```
//
// Where:
//
// * `N`: is the attenuation factor in dB
// * `tN`: is the filter period in seconds, that is, the time for the
// impulse response to decay by `N` dB
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/mdft/Exponentials.html>
//----------------------------------------------------------
declare lptN author "Julius O. Smith III";
declare lptN copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare lptN license "MIT-style STK-4.3 license";
lptN(N, tN, x) = x : si.smooth(ba.tau2pole(tN / log(10.0^(float(N)/20.0))));
// Special cases of lptN
lptau(tN, x) = lptN(8.6858896381, tN, x); // Tau time constant, i.e., 1/e atten. after tN secs
lpt60(tN, x) = lptN(60, tN, x); // T60 constant, i.e., 1/1000 atten. after tN secs
lpt19(tN, x) = lptN(19, tN, x); // T19 constant, i.e., 1/e^2.2 atten. after tN secs
//=======================================Comb Filters=====================================
//========================================================================================
//------`(fi.)ff_comb`--------
// Feed-Forward Comb Filter. Note that `ff_comb` requires integer delays
// (uses `delay` internally).
// `ff_comb` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : ff_comb(maxdel,intdel,b0,bM) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `b0`: gain applied to delay-line input
// * `bM`: gain applied to delay-line output and then summed with input
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html>
//------------------------------------------------------------
declare ff_comb author "Julius O. Smith III";
declare ff_comb copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare ff_comb license "MIT-style STK-4.3 license";
ff_comb(maxdel,M,b0,bM) = _ <: *(b0), bM * de.delay(maxdel,M) : +;
//------`(fi.)ff_fcomb`--------
// Feed-Forward Comb Filter. Note that `ff_fcomb` takes floating-point delays
// (uses `fdelay` internally).
// `ff_fcomb` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : ff_fcomb(maxdel,del,b0,bM) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `b0`: gain applied to delay-line input
// * `bM`: gain applied to delay-line output and then summed with input
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Feedforward_Comb_Filters.html>
//------------------------------------------------------------
declare ff_fcomb author "Julius O. Smith III";
declare ff_fcomb copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare ff_fcomb license "MIT-style STK-4.3 license";
ff_fcomb(maxdel,del,b0,bM) = _ <: *(b0), bM * de.fdelay(maxdel,del) : +;
//-----------`(fi.)ffcombfilter`-------------------
// Typical special case of `ff_comb()` where: `b0 = 1`.
//------------------------------------------------------------
declare ff_combfilter author "Julius O. Smith III";
declare ff_combfilter copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare ff_combfilter license "MIT-style STK-4.3 license";
ffcombfilter(maxdel,del,g) = ff_comb(maxdel,del,1,g);
//---------------------`(fi.)fb_comb_common`---------------------
// A generic feedback comb filter.
//
// #### Usage
//
// ```
// _ : fb_comb_common(dop,N,b0,aN) : _
// ```
//
// Where
//
// * `dop`: delay operator, e.g. `@` or `de.fdelay4a(2048)`
// * `N`: current delay
// * `b0`: gain applied to input
// * `aN`: gain applied to delay-line output
//
// #### Example test program
//
// ```
// process = fb_comb_common(@,N,b0,aN);
// ```
// implements the following difference equation:
// ```
// y[n] = b0 x[n] + aN y[n - N]
// ```
//
// See more examples in `filters.lib` below.
// --------------------------------------------------------
declare fb_comb_common author "Oleg Nesterov";
fb_comb_common(dop,N,b0,aN) = + ~ aN * dop(N-1) : *(b0);
//-----------------------`(fi.)fb_comb`-----------------------
// Feed-Back Comb Filter (integer delay).
//
// #### Usage
//
// ```
// _ : fb_comb(maxdel,del,b0,aN) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `b0`: gain applied to delay-line input and forwarded to output
// * `aN`: minus the gain applied to delay-line output before summing with the input
// and feeding to the delay line
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html>
//------------------------------------------------------------
declare fb_comb author "Julius O. Smith III";
declare fb_comb copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>, revised by Oleg Nesterov";
declare fb_comb license "MIT-style STK-4.3 license";
fb_comb(maxdel,del,b0,aN) = fb_comb_common(de.delay(maxdel),del,b0,-aN) : mem;
//-----------------------`(fi.)fb_fcomb`-----------------------
// Feed-Back Comb Filter (floating point delay).
//
// #### Usage
//
// ```
// _ : fb_fcomb(maxdel,del,b0,aN) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `b0`: gain applied to delay-line input and forwarded to output
// * `aN`: minus the gain applied to delay-line output before summing with the input
// and feeding to the delay line
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html>
//------------------------------------------------------------
declare fb_fcomb author "Julius O. Smith III";
declare fb_fcomb copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>, revised by Oleg Nesterov";
declare fb_fcomb license "MIT-style STK-4.3 license";
fb_fcomb(maxdel,del,b0,aN) = fb_comb_common(de.fdelay(maxdel),del,b0,-aN) : mem;
//-----------------------`(fi.)rev1`-----------------------
// Special case of `fb_comb` (`rev1(maxdel,N,g)`).
// The "rev1 section" dates back to the 1960s in computer-music reverberation.
// See the `jcrev` and `brassrev` in `reverbs.lib` for usage examples.
//------------------------------------------------------------
declare rev1 author "Julius O. Smith III";
declare rev1 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare rev1 license "MIT-style STK-4.3 license";
rev1(maxdel,N,g) = fb_comb(maxdel,N,1,-g);
//-----`(fi.)fbcombfilter` and `(fi.)ffbcombfilter`------------
// Other special cases of Feed-Back Comb Filter.
//
// #### Usage
//
// ```
// _ : fbcombfilter(maxdel,intdel,g) : _
// _ : ffbcombfilter(maxdel,del,g) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `g`: feedback gain
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Feedback_Comb_Filters.html>
//------------------------------------------------------------
declare fbcombfilter author "Julius O. Smith III";
declare fbcombfilter copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare fbcombfilter license "MIT-style STK-4.3 license";
fbcombfilter(maxdel,intdel,g) = (+ : de.delay(maxdel,intdel)) ~ *(g);
declare ffbcombfilter author "Julius O. Smith III";
declare ffbcombfilter copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare ffbcombfilter license "MIT-style STK-4.3 license";
ffbcombfilter(maxdel,del,g) = (+ : de.fdelay(maxdel,del)) ~ *(g);
//-------------------`(fi.)allpass_comb`-----------------
// Schroeder Allpass Comb Filter. Note that:
//
// ```
// allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);
// ```
//
// which is a direct-form-1 implementation, requiring two delay lines.
// The implementation here is direct-form-2 requiring only one delay line.
//
// #### Usage
//
// ```
// _ : allpass_comb(maxdel,intdel,aN) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (integer) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `aN`: minus the feedback gain
//
// #### References
// * <https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html>
// * <https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html>
//------------------------------------------------------------
declare allpass_comb author "Julius O. Smith III";
declare allpass_comb copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpass_comb license "MIT-style STK-4.3 license";
allpass_comb(maxdel,N,aN) = (+ <: de.delay(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : +;
//-------------------`(fi.)allpass_fcomb`-----------------
// Schroeder Allpass Comb Filter. Note that:
//
// ```
// allpass_comb(maxlen,len,aN) = ff_comb(maxlen,len,aN,1) : fb_comb(maxlen,len-1,1,aN);
// ```
//
// which is a direct-form-1 implementation, requiring two delay lines.
// The implementation here is direct-form-2 requiring only one delay line.
//
// `allpass_fcomb` is a standard Faust library.
//
// #### Usage
//
// ```
// _ : allpass_comb(maxdel,intdel,aN) : _
// _ : allpass_fcomb(maxdel,del,aN) : _
// ```
//
// Where:
//
// * `maxdel`: maximum delay (a power of 2)
// * `intdel`: current (float) comb-filter delay between 0 and maxdel
// * `del`: current (float) comb-filter delay between 0 and maxdel
// * `aN`: minus the feedback gain
//
// #### References
// * <https://ccrma.stanford.edu/~jos/pasp/Allpass_Two_Combs.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Schroeder_Allpass_Sections.html>
// * <https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html>
//------------------------------------------------------------
declare allpass_fcomb author "Julius O. Smith III";
declare allpass_fcomb copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpass_fcomb license "MIT-style STK-4.3 license";
allpass_fcomb(maxdel,N,aN) = (+ <: de.fdelay(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : +;
//-----------------------`(fi.)rev2`-----------------------
// Special case of `allpass_comb` (`rev2(maxlen,len,g)`).
// The "rev2 section" dates back to the 1960s in computer-music reverberation.
// See the `jcrev` and `brassrev` in `reverbs.lib` for usage examples.
//------------------------------------------------------------
declare rev2 author "Julius O. Smith III";
declare rev2 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare rev2 license "MIT-style STK-4.3 license";
rev2(maxlen,len,g) = allpass_comb(maxlen,len,-g);
//-------------------`(fi.)allpass_fcomb5` and `(fi.)allpass_fcomb1a`-----------------
// Same as `allpass_fcomb` but use `fdelay5` and `fdelay1a` internally
// (Interpolation helps - look at an fft of faust2octave on
//
// ```
// `1-1' <: allpass_fcomb(1024,10.5,0.95), allpass_fcomb5(1024,10.5,0.95);`).
// ```
//------------------------------------------------------------
declare allpass_fcomb5 author "Julius O. Smith III";
declare allpass_fcomb5 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpass_fcomb5 license "MIT-style STK-4.3 license";
allpass_fcomb5(maxdel,N,aN) = (+ <: de.fdelay5(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : +;
declare allpass_fcomb1a author "Julius O. Smith III";
declare allpass_fcomb1a copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpass_fcomb1a license "MIT-style STK-4.3 license";
allpass_fcomb1a(maxdel,N,aN) = (+ <: de.fdelay1a(maxdel,N-1),*(aN)) ~ *(-aN) : mem,_ : +;
//========================Direct-Form Digital Filter Sections=============================
//========================================================================================
// Specified by transfer-function polynomials B(z)/A(z) as in matlab
//----------------------------`(fi.)iir`-------------------------------
// Nth-order Infinite-Impulse-Response (IIR) digital filter,
// implemented in terms of the Transfer-Function (TF) coefficients.
// Such filter structures are termed "direct form".
//
// `iir` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : iir(bcoeffs,acoeffs) : _
// ```
//
// Where:
//
// * `bcoeffs`: (b0,b1,...,b_order) = TF numerator coefficients
// * `acoeffs`: (a1,...,a_order) = TF denominator coeffs (a0=1)
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html>
//------------------------------------------------------------
declare iir author "Julius O. Smith III";
declare iir copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare iir license "MIT-style STK-4.3 license";
iir(bv,av) = ma.sub ~ fir(av) : fir(bv);
//-----------------------------`(fi.)fir`---------------------------------
// FIR filter (convolution of FIR filter coefficients with a signal). `fir` is standard Faust function.
//
// #### Usage
//
// ```
// _ : fir(bv) : _
// ```
//
// Where:
//
// * `bv` = b0,b1,...,bn is a parallel bank of coefficient signals.
//
// #### Note
//
// `bv` is processed using pattern-matching at compile time,
// so it must have this normal form (parallel signals).
//
// #### Example test program
//
// Smoothing white noise with a five-point moving average:
//
// ```
// bv = .2,.2,.2,.2,.2;
// process = noise : fir(bv);
// ```
//
// Equivalent (note double parens):
//
// ```
// process = noise : fir((.2,.2,.2,.2,.2));
// ```
//------------------------------------------------------------
//fir(bv) = conv(bv);
declare fir author "Julius O. Smith III";
declare fir copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare fir license "MIT-style STK-4.3 license";
fir((b0,bv)) = _ <: *(b0), R(1,bv) :> _ with {
R(n,(bn,bv)) = (@(n):*(bn)), R(n+1,bv);
R(n, bn) = (@(n):*(bn)); };
fir(b0) = *(b0);
//---------------`(fi.)conv` and `(fi.)convN`-------------------------------
// Convolution of input signal with given coefficients.
//
// #### Usage
//
// ```
// _ : conv((k1,k2,k3,...,kN)) : _ // Argument = one signal bank
// _ : convN(N,(k1,k2,k3,...)) : _ // Useful when N < count((k1,...))
// ```
//------------------------------------------------------------
//convN(N,kv,x) = sum(i,N,take(i+1,kv) * x@i); // take() defined in math.lib
declare convN author "Julius O. Smith III";
declare convN copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare convN license "MIT-style STK-4.3 license";
convN(N,kv) = sum(i,N, @(i)*take(i+1,kv)); // take() defined in math.lib
//conv(kv,x) = sum(i,count(kv),take(i+1,kv) * x@i); // count() from math.lib
declare conv author "Julius O. Smith III";
declare conv copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare conv license "MIT-style STK-4.3 license";
conv(kv) = fir(kv);
//----------------`(fi.)tf1`, `(fi.)tf2` and `(fi.)tf3`----------------------
// tfN = N'th-order direct-form digital filter.
//
// #### Usage
//
// ```
// _ : tf1(b0,b1,a1) : _
// _ : tf2(b0,b1,b2,a1,a2) : _
// _ : tf3(b0,b1,b2,b3,a1,a2,a3) : _
// ```
//
// Where:
//
// * `b`: transfer-function numerator
// * `a`: transfer-function denominator (monic)
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html>
//------------------------------------------------------------
declare tf1 author "Julius O. Smith III";
declare tf1 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf1 license "MIT-style STK-4.3 license";
tf1(b0,b1,a1) = _ <: *(b0), (mem : *(b1)) :> + ~ *(0-a1);
declare tf2 author "Julius O. Smith III";
declare tf2 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf2 license "MIT-style STK-4.3 license";
tf2(b0,b1,b2,a1,a2) = iir((b0,b1,b2),(a1,a2));
// tf2 is a variant of tf22 below with duplicated mems
declare tf3 author "Julius O. Smith III";
declare tf3 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf3 license "MIT-style STK-4.3 license";
tf3(b0,b1,b2,b3,a1,a2,a3) = iir((b0,b1,b2,b3),(a1,a2,a3));
// "Original" version for music.lib. This is here for comparison but people should
// use tf2 instead
TF2(b0,b1,b2,a1,a2) = sub ~ conv2(a1,a2) : conv3(b0,b1,b2)
with {
conv3(k0,k1,k2,x) = k0*x + k1*x' + k2*x'';
conv2(k0,k1,x) = k0*x + k1*x';
sub(x,y) = y-x;
};
//------------`(fi.)notchw`--------------
// Simple notch filter based on a biquad (`tf2`).
// `notchw` is a standard Faust function.
//
// #### Usage:
//
// ```
// _ : notchw(width,freq) : _
// ```
//
// Where:
//
// * `width`: "notch width" in Hz (approximate)
// * `freq`: "notch frequency" in Hz
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Phasing_2nd_Order_Allpass_Filters.html>
//------------------------------------------------------------
declare notchw author "Julius O. Smith III";
declare notchw copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare notchw license "MIT-style STK-4.3 license";
notchw(width,freq) = tf2(b0,b1,b2,a1,a2)
with {
fb = 0.5*width; // First design a dcblockerat(width/2)
wn = ma.PI*fb/ma.SR;
b0db = 1.0 / (1 + wn);
p = (1 - wn) * b0db; // This is our pole radius.
// Now place unit-circle zeros at desired angles:
tn = 2*ma.PI*freq/ma.SR;
a2 = p * p;
a2p1 = 1+a2;
a1 = -a2p1*cos(tn);
b1 = a1;
b0 = 0.5*a2p1;
b2 = b0;
};
//======================Direct-Form Second-Order Biquad Sections==========================
// Direct-Form Second-Order Biquad Sections
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/filters/Four_Direct_Forms.html>
//========================================================================================
//----------------`(fi.)tf21`, `(fi.)tf22`, `(fi.)tf22t` and `(fi.)tf21t`----------------------
// tfN = N'th-order direct-form digital filter where:
//
// * `tf21` is tf2, direct-form 1
// * `tf22` is tf2, direct-form 2
// * `tf22t` is tf2, direct-form 2 transposed
// * `tf21t` is tf2, direct-form 1 transposed
//
// #### Usage
//
// ```
// _ : tf21(b0,b1,b2,a1,a2) : _
// _ : tf22(b0,b1,b2,a1,a2) : _
// _ : tf22t(b0,b1,b2,a1,a2) : _
// _ : tf21t(b0,b1,b2,a1,a2) : _
// ```
//
// Where:
//
// * `b`: transfer-function numerator
// * `a`: transfer-function denominator (monic)
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/fp/Direct_Form_I.html>
//------------------------------------------------------------
declare tf21 author "Julius O. Smith III";
declare tf21 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf21 license "MIT-style STK-4.3 license";
tf21(b0,b1,b2,a1,a2) = // tf2, direct-form 1:
_ <:(mem<:((mem:*(b2)),*(b1))),*(b0) :>_
: ((_,_,_:>_) ~(_<:*(-a1),(mem:*(-a2))));
declare tf22 author "Julius O. Smith III";
declare tf22 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf22 license "MIT-style STK-4.3 license";
tf22(b0,b1,b2,a1,a2) = // tf2, direct-form 2:
_ : (((_,_,_:>_)~*(-a1)<:mem,*(b0))~*(-a2))
: (_<:mem,*(b1)),_ : *(b2),_,_ :> _;
declare tf22t author "Julius O. Smith III";
declare tf22t copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf22t license "MIT-style STK-4.3 license";
tf22t(b0,b1,b2,a1,a2) = // tf2, direct-form 2 transposed:
_ : (_,_,(_ <: *(b2)',*(b1)',*(b0))
: _,+',_,_ :> _)~*(-a1)~*(-a2) : _;
declare tf21t author "Julius O. Smith III";
declare tf21t copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf21t license "MIT-style STK-4.3 license";
tf21t(b0,b1,b2,a1,a2) = // tf2, direct-form 1 transposed:
tf22t(1,0,0,a1,a2) : tf22t(b0,b1,b2,0,0); // or write it out if you want
//=========================== Ladder/Lattice Digital Filters =============================
// Ladder and lattice digital filters generally have superior numerical
// properties relative to direct-form digital filters. They can be derived
// from digital waveguide filters, which gives them a physical interpretation.
// #### Reference
// * F. Itakura and S. Saito: "Digital Filtering Techniques for Speech Analysis and Synthesis",
// 7th Int. Cong. Acoustics, Budapest, 25 C 1, 1971.
// * J. D. Markel and A. H. Gray: Linear Prediction of Speech, New York: Springer Verlag, 1976.
// * <https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html>
//========================================================================================
//-------------------------------`(fi.)av2sv`-----------------------------------
// Compute reflection coefficients sv from transfer-function denominator av.
//
// #### Usage
//
// ```
// sv = av2sv(av)
// ```
//
// Where:
//
// * `av`: parallel signal bank `a1,...,aN`
// * `sv`: parallel signal bank `s1,...,sN`
//
// where `ro = ith` reflection coefficient, and
// `ai` = coefficient of `z^(-i)` in the filter
// transfer-function denominator `A(z)`.
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/filters/Step_Down_Procedure.html>
// (where reflection coefficients are denoted by k rather than s).
//------------------------------------------------------------
declare av2sv author "Julius O. Smith III";
declare av2sv copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare av2sv license "MIT-style STK-4.3 license";
av2sv(av) = par(i,M,s(i+1)) with {
M = ba.count(av);
s(m) = sr(M-m+1); // m=1..M
sr(m) = Ari(m,M-m+1); // s_{M-1-m}
Ari(m,i) = ba.take(i+1,Ar(m-1));
//step-down recursion for lattice/ladder digital filters:
Ar(0) = (1,av); // Ar(m) is order M-m (i.e. "reverse-indexed")
Ar(m) = 1,par(i,M-m, (Ari(m,i+1) - sr(m)*Ari(m,M-m-i))/(1-sr(m)*sr(m)));
};
//----------------------------`(fi.)bvav2nuv`--------------------------------
// Compute lattice tap coefficients from transfer-function coefficients.
//
// #### Usage
//
// ```
// nuv = bvav2nuv(bv,av)
// ```
//
// Where:
//
// * `av`: parallel signal bank `a1,...,aN`
// * `bv`: parallel signal bank `b0,b1,...,aN`
// * `nuv`: parallel signal bank `nu1,...,nuN`
//
// where `nui` is the i'th tap coefficient,
// `bi` is the coefficient of `z^(-i)` in the filter numerator,
// `ai` is the coefficient of `z^(-i)` in the filter denominator
//------------------------------------------------------------
declare bvav2nuv author "Julius O. Smith III";
declare bvav2nuv copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare bvav2nuv license "MIT-style STK-4.3 license";
bvav2nuv(bv,av) = par(m,M+1,nu(m)) with {
M = ba.count(av);
nu(m) = ba.take(m+1,Pr(M-m)); // m=0..M
// lattice/ladder tap parameters:
Pr(0) = bv; // Pr(m) is order M-m, 'r' means "reversed"
Pr(m) = par(i,M-m+1, (Pri(m,i) - nu(M-m+1)*Ari(m,M-m-i+1)));
Pri(m,i) = ba.take(i+1,Pr(m-1));
Ari(m,i) = ba.take(i+1,Ar(m-1));
//step-down recursion for lattice/ladder digital filters:
Ar(0) = (1,av); // Ar(m) is order M-m (recursion index must start at constant)
Ar(m) = 1,par(i,M-m, (Ari(m,i+1) - sr(m)*Ari(m,M-m-i))/(1-sr(m)*sr(m)));
sr(m) = Ari(m,M-m+1); // s_{M-1-m}
};
//--------------------`(fi.)iir_lat2`-----------------------
// Two-multiply lattice IIR filter of arbitrary order.
//
// #### Usage
//
// ```
// _ : iir_lat2(bv,av) : _
// ```
//
// Where:
//
// * `bv`: transfer-function numerator
// * `av`: transfer-function denominator (monic)
//------------------------------------------------------------
declare iir_lat2 author "Julius O. Smith III";
declare iir_lat2 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare iir_lat2 license "MIT-style STK-4.3 license";
iir_lat2(bv,av) = allpassnt(M,sv) : sum(i,M+1,*(ba.take(M-i+1,tg)))
with {
M = ba.count(av);
sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients
tg = bvav2nuv(bv,av); // tg = vector of tap gains
};
//-----------------------`(fi.)allpassnt`--------------------------
// Two-multiply lattice allpass (nested order-1 direct-form-ii allpasses), with taps.
//
// #### Usage
//
// ```
// _ : allpassnt(n,sv) : si.bus(n+1)
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflection coefficients (-1 1)
//
// The first output is the n-th order allpass output,
// while the remaining outputs are taps taken from the
// input of each delay element from the input to the output.
// See (fi.)allpassn for the single-output case.
//------------------------------------------------------------
declare allpassnt author "Julius O. Smith III";
declare allpassnt copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpassnt license "MIT-style STK-4.3 license";
allpassnt(0,sv) = _;
allpassnt(n,sv) = _ : ((+ <: (allpassnt(n-1,sv),*(s)))~*(-s)) : fsec(n)
with {
fsec(1) = ro.crossnn(1) : _, (_<:mem,_) : +,_;
fsec(n) = ro.crossn1(n) : _, (_<:mem,_),par(i,n-1,_) : +, par(i,n,_);
innertaps(n) = par(i,n,_);
s = ba.take(n,sv); // reflection coefficient s = sin(theta)
};
//--------------------`(fi.)iir_kl`-----------------------
// Kelly-Lochbaum ladder IIR filter of arbitrary order.
//
// #### Usage
//
// ```
// _ : iir_kl(bv,av) : _
// ```
//
// Where:
//
// * `bv`: transfer-function numerator
// * `av`: transfer-function denominator (monic)
//------------------------------------------------------------
declare iir_kl author "Julius O. Smith III";
declare iir_kl copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare iir_kl license "MIT-style STK-4.3 license";
iir_kl(bv,av) = allpassnklt(M,sv) : sum(i,M+1,*(tghr(i)))
with {
M = ba.count(av);
sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients
tg = bvav2nuv(bv,av); // tg = vector of tap gains for 2mul case
tgr(i) = ba.take(M+1-i,tg);
tghr(n) = tgr(n)/pi(n);
pi(0) = 1;
pi(n) = pi(n-1)*(1+ba.take(M-n+1,sv)); // all sign parameters '+'
};
//-----------------------`(fi.)allpassnklt`--------------------------
// Kelly-Lochbaum ladder allpass.
//
// #### Usage:
//
// ```
// _ : allpassnklt(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflection coefficients (-1 1)
//------------------------------------------------------------
declare allpassnklt author "Julius O. Smith III";
declare allpassnklt copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpassnklt license "MIT-style STK-4.3 license";
allpassnklt(0,sv) = _;
allpassnklt(n,sv) = _ <: *(s),(*(1+s) : (+
: allpassnklt(n-1,sv))~(*(-s))) : fsec(n)
with {
fsec(1) = _, (_<:mem*(1-s),_) : sumandtaps(n);
fsec(n) = _, (_<:mem*(1-s),_), par(i,n-1,_) : sumandtaps(n);
s = ba.take(n,sv);
sumandtaps(n) = +,par(i,n,_);
};
//--------------------`(fi.)iir_lat1`-----------------------
// One-multiply lattice IIR filter of arbitrary order.
//
// #### Usage
//
// ```
// _ : iir_lat1(bv,av) : _
// ```
//
// Where:
//
// * bv: transfer-function numerator as a bank of parallel signals
// * av: transfer-function denominator as a bank of parallel signals
//------------------------------------------------------------
declare iir_lat1 author "Julius O. Smith III";
declare iir_lat1 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare iir_lat1 license "MIT-style STK-4.3 license";
iir_lat1(bv,av) = allpassn1mt(M,sv) : sum(i,M+1,*(tghr(i+1)))
with {
M = ba.count(av);
sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients
tg = bvav2nuv(bv,av); // tg = vector of tap gains
tgr(i) = ba.take(M+2-i,tg); // i=1..M+1 (for "takability")
tghr(n) = tgr(n)/pi(n);
pi(1) = 1;
pi(n) = pi(n-1)*(1+ba.take(M-n+2,sv)); // all sign parameters '+'
};
//-----------------------`(fi.)allpassn1mt`--------------------------
// One-multiply lattice allpass with tap lines.
//
// #### Usage
//
// ```
// _ : allpassn1mt(N,sv) : _
// ```
//
// Where:
//
// * `N`: the order of the filter (fixed at compile time)
// * `sv`: the reflection coefficients (-1 1)
//------------------------------------------------------------
declare allpassn1mt author "Julius O. Smith III";
declare allpassn1mt copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpassn1mt license "MIT-style STK-4.3 license";
allpassn1mt(0,sv) = _;
allpassn1mt(n,sv) = _ <: _,_ : ((+:*(s) <: _,_),_ : _,+ : ro.crossnn(1)
: allpassn1mt(n-1,sv),_)~(*(-1)) : fsec(n)
with {
fsec(1) = ro.crossnn(1) : _, (_<:mem,_) : +,_;
fsec(n) = ro.crossn1(n) : _, (_<:mem,_),par(i,n-1,_) : +, par(i,n,_);
innertaps(n) = par(i,n,_);
s = ba.take(n,sv); // reflection coefficient s = sin(theta)
};
//-------------------------------`(fi.)iir_nl`-------------------------
// Normalized ladder filter of arbitrary order.
//
// #### Usage
//
// ```
// _ : iir_nl(bv,av) : _
// ```
//
// Where:
//
// * `bv`: transfer-function numerator
// * `av`: transfer-function denominator (monic)
//
// #### References
// * J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York: Springer Verlag, 1976.
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
declare iir_nl author "Julius O. Smith III";
declare iir_nl copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare iir_nl license "MIT-style STK-4.3 license";
iir_nl(bv,av) = allpassnnlt(M,sv) : sum(i,M+1,*(tghr(i)))
with {
M = ba.count(av);
sv = av2sv(av); // sv = vector of sin(theta) reflection coefficients
tg = bvav2nuv(bv,av); // tg = vector of tap gains for 2mul case
tgr(i) = ba.take(M+1-i,tg);
tghr(n) = tgr(n)/pi(n);
pi(0) = 1;
s(n) = ba.take(M-n+1,sv); // reflection coefficient = sin(theta)
c(n) = sqrt(max(0,1-s(n)*s(n))); // compiler crashes on sqrt(-)
pi(n) = pi(n-1)*c(n);
};
//-------------------------------`(fi.)allpassnnlt`-------------------------
// Normalized ladder allpass filter of arbitrary order.
//
// #### Usage:
//
// ```
// _ : allpassnnlt(N,sv) : _
// ```
//
// Where:
//
// * `N`: the order of the filter (fixed at compile time)
// * `sv`: the reflection coefficients (-1,1)
//
// #### References
// * J. D. Markel and A. H. Gray, Linear Prediction of Speech, New York: Springer Verlag, 1976.
// * <https://ccrma.stanford.edu/~jos/pasp/Normalized_Scattering_Junctions.html>
//------------------------------------------------------------
declare allpassnnlt author "Julius O. Smith III";
declare allpassnnlt copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpassnnlt license "MIT-style STK-4.3 license";
allpassnnlt(0,sv) = _;
allpassnnlt(n,scl*(sv)) = allpassnnlt(n,par(i,count(sv),scl*(sv(i))));
allpassnnlt(n,sv) = _ <: *(s),(*(c) : (+
: allpassnnlt(n-1,sv))~(*(-s))) : fsec(n)
with {
fsec(1) = _, (_<:mem*(c),_) : sumandtaps(n);
fsec(n) = _, (_<:mem*(c),_), par(i,n-1,_) : sumandtaps(n);
s = ba.take(n,sv);
c = sqrt(max(0,1-s*s));
sumandtaps(n) = +,par(i,n,_);
};
//=============================Useful Special Cases=======================================
//========================================================================================
//--------------------------------`(fi.)tf2np`------------------------------------
// Biquad based on a stable second-order Normalized Ladder Filter
// (more robust to modulation than `tf2` and protected against instability).
//
// #### Usage
//
// ```
// _ : tf2np(b0,b1,b2,a1,a2) : _
// ```
//
// Where:
//
// * `b`: transfer-function numerator
// * `a`: transfer-function denominator (monic)
//------------------------------------------------------------
declare tf2np author "Julius O. Smith III";
declare tf2np copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf2np license "MIT-style STK-4.3 license";
tf2np(b0,b1,b2,a1,a2) = allpassnnlt(M,sv) : sum(i,M+1,*(tghr(i)))
with {
smax = 1.0-ma.EPSILON; // maximum reflection-coefficient magnitude allowed
s2 = max(-smax, min(smax,a2)); // Project both reflection-coefficients
s1 = max(-smax, min(smax,a1/(1+a2))); // into the defined stability-region.
sv = (s1,s2); // vector of sin(theta) reflection coefficients
M = 2;
nu(2) = b2;
nu(1) = b1 - b2*a1;
nu(0) = (b0-b2*a2) - nu(1)*s1;
tg = (nu(0),nu(1),nu(2));
tgr(i) = ba.take(M+1-i,tg); // vector of tap gains for 2mul case
tghr(n) = tgr(n)/pi(n); // apply pi parameters for NLF case
pi(0) = 1;
s(n) = ba.take(M-n+1,sv);
c(n) = sqrt(1-s(n)*s(n));
pi(n) = pi(n-1)*c(n);
};
//-----------------------------`(fi.)wgr`---------------------------------
// Second-order transformer-normalized digital waveguide resonator.
//
// #### Usage
//
// ```
// _ : wgr(f,r) : _
// ```
//
// Where:
//
// * `f`: resonance frequency (Hz)
// * `r`: loss factor for exponential decay (set to 1 to make a numerically stable oscillator)
//
// #### References
// * <https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Oscillator.html>
//------------------------------------------------------------
declare wgr author "Julius O. Smith III";
declare wgr copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare wgr license "MIT-style STK-4.3 license";
wgr(f,r,x) = (*(G),_<:_,((+:*(C))<:_,_),_:+,_,_:+(x),-) ~ cross : _,*(0-gi)
with {
C = cos(2*ma.PI*f/ma.SR);
gi = sqrt(max(0,(1+C)/(1-C))); // compensate amplitude (only needed when
G = r*(1-1' + gi')/gi; // frequency changes substantially)
cross = _,_ <: !,_,_,!;
};
//-----------------------------`(fi.)nlf2`--------------------------------
// Second order normalized digital waveguide resonator.
//
// #### Usage
//
// ```
// _ : nlf2(f,r) : _
// ```
//
// Where:
//
// * `f`: resonance frequency (Hz)
// * `r`: loss factor for exponential decay (set to 1 to make a sinusoidal oscillator)
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Power_Normalized_Waveguide_Filters.html>
//------------------------------------------------------------
declare nlf2 author "Julius O. Smith III";
declare nlf2 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare nlf2 license "MIT-style STK-4.3 license";
nlf2(f,r,x) = ((_<:_,_),(_<:_,_) : (*(s),*(c),*(c),*(0-s)) :>
(*(r),+(x))) ~ cross
with {
th = 2*ma.PI*f/ma.SR;
c = cos(th);
s = sin(th);
cross = _,_ <: !,_,_,!;
};
//------------`(fi.)apnl`---------------
// Passive Nonlinear Allpass based on Pierce switching springs idea.
// Switch between allpass coefficient `a1` and `a2` at signal zero crossings.
//
// #### Usage
//
// ```
// _ : apnl(a1,a2) : _
// ```
//
// Where:
//
// * `a1` and `a2`: allpass coefficients
//
// #### Reference
// * "A Passive Nonlinear Digital Filter Design ..." by John R. Pierce and Scott
// A. Van Duyne, JASA, vol. 101, no. 2, pp. 1120-1126, 1997
//------------------------------------------------------------
declare apnl author "Julius O. Smith III";
declare apnl copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare apnl license "MIT-style STK-4.3 license";
apnl(a1,a2,x) = nonLinFilter
with {
condition = _>0;
nonLinFilter = (x - _ <: _*(condition*a1 + (1-condition)*a2),_')~_ :> +;
};
//============================Ladder/Lattice Allpass Filters==============================
// An allpass filter has gain 1 at every frequency, but variable phase.
// Ladder/lattice allpass filters are specified by reflection coefficients.
// They are defined here as nested allpass filters, hence the names `allpassn*`.
//
// #### References
// * <https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Nested_Allpass_Filters.html>
// * Linear Prediction of Speech, Markel and Gray, Springer Verlag, 1976
//========================================================================================
//-----------------------`(fi.)scatN`--------------------------
// N-port scattering junction.
//
// #### Usage
//
// ```
// si.bus(N) : scatN(N,av,filter) : si.bus(N)
// ```
//
// Where:
//
// * `N`: number of incoming/outgoing waves
// * `av`: vector (list) of `N` alpha parameters (each between 0 and 2, and normally summing to 2): <https://ccrma.stanford.edu/~jos/pasp/Alpha_Parameters.html>
// * `filter` : optional junction filter to apply (`_` for none, see below)
//
// With no filter:
//
// - The junction is _lossless_ when the alpha parameters sum to 2 ("allpass").
// - The junction is _passive_ but lossy when the alpha parameters sum to less than 2 ("resistive loss").
// - Dynamic and reactive junctions are obtained using the `filter` argument.
// For guaranteed stability, the filter should be _positive real_. (See 2nd ref. below).
//
// For \(N=2\) (two-port scattering), the reflection coefficient \(\rho\) corresponds
// to alpha parameters \(1\pm\rho\).
//
// #### Example: Whacky echo chamber made of 16 lossless "acoustic tubes":
//
// ```
// process = _ : *(1.0/sqrt(N)) <: daisyRev(16,2,0.9999) :> _,_ with {
// daisyRev(N,Dp2,G) = si.bus(N) : (si.bus(2*N) :> si.bus(N)
// : fi.scatN(N, par(i,N,2*G/float(N)), fi.lowpass(1,5000.0))
// : par(i,N,de.delay(DS(i),DS(i)-1))) ~ si.bus(N) with { DS(i) = 2^(Dp2+i); };
// };
// ```
//
// #### References
// * <https://ccrma.stanford.edu/~jos/pasp/Loaded_Waveguide_Junctions.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Passive_String_Terminations.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Unloaded_Junctions_Alpha_Parameters.html>
//------------------------------------------------------------
declare scatN author "Julius O. Smith III";
declare scatN copyright "Copyright (C) 2024 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare scatN license "MIT-style STK-4.3 license";
scatN(0,av,filter) = !;
scatN(N,av,filter) = incomingWaves <: (junctionSum : filter <: si.bus(N)), par(i,N,*(-1)) :> si.bus(N)
with {
incomingWaves = si.bus(N);
alpha(i) = ba.take(i+1,av);
junctionSum = par(i,N,*(alpha(i))) :> _; // Junction velocity/pressure for series/parallel junction
outgoingWaves = junctionSum <: si.bus(N), negatedIncoming :> si.bus(N);
alphaSum = sum(i,N,alpha(i));
};
//---------------`(fi.)scat`-----------------
// Scatter off of reflectance r with reflection coefficient s.
//
// #### Usage:
//
// ```
// _ : scat(s,r) : _
// ```
// #### Where:
//
// * `s`: reflection coefficient between -1 and 1 for stability
// * `r`: single-input, single-output block diagram,
// having gain less than 1 at all frequencies for stability.
//
// #### Example: The following program should produce all zeros:
//
// ```
// process = fi.allpassn(3,(.3,.2,.1)), fi.scat(.1, fi.scat(.2, fi.scat(.3, _)))
// :> - : ^(2) : +~_;
// ```
//
// #### Reference:
// * <https://ccrma.stanford.edu/~jos/pasp/Scattering_Impedance_Changes.html>
//----------------------------------------------
declare scat author "Julius O. Smith III";
declare scat copyright "Copyright (C) 2024 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare scat license "MIT-style STK-4.3 license";
scat(s,r) = _ <: ((+ <: (r,*(s)))~(*(-s))) : _',_ :+;
//---------------`(fi.)allpassn`-----------------
// Two-multiply lattice filter.
//
// #### Usage:
//
// ```
// _ : allpassn(n,sv) : _
// ```
// #### Where:
//
// * `n`: the order of the filter
// * `sv`: the reflection coefficients (-1 1)
// * `sv`: the reflection coefficients (s1,s2,...,sN), each between -1 and 1.
//
// Equivalent to `fi.allpassnt(n,sv) : _, par(i,n,!);`
// Equivalent to `fi.scat( s(n), fi.scat( s(n-1), ..., fi.scat( s(1), _ )))
// with { s(k) = ba.take(k,sv); } ;`
// Identical to `allpassn` in `old/filter.lib`.
//
// #### References
// * J. D. Markel and A. H. Gray: Linear Prediction of Speech, New York: Springer Verlag, 1976.
// * <https://ccrma.stanford.edu/~jos/pasp/Conventional_Ladder_Filters.html>
//----------------------------------------------
declare allpassn author "Julius O. Smith III";
declare allpassn copyright "Copyright (c) 2003-2024 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpassn license "MIT-style STK-4.3 license";
allpassn(0,sv) = _;
allpassn(n,sv) = _ <: ((+ <: (allpassn(n-1,sv)),*(s))~(*(-s))) : _',_ :+
with { s = ba.take(n,sv); };
//---------------`(fi.)allpassnn`-----------------
// Normalized form - four multiplies and two adds per section,
// but coefficients can be time varying and nonlinear without
// "parametric amplification" (modulation of signal energy).
//
// #### Usage:
//
// ```
// _ : allpassnn(n,tv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `tv`: the reflection coefficients (-PI PI)
//----------------------------------------------
// power-normalized (reflection coefficients s = sin(t)):
declare allpassnn author "Julius O. Smith III";
declare allpassnn copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpassnn license "MIT-style STK-4.3 license";
allpassnn(0,tv) = _;
allpassnn(n,tv) = _ <: *(s), (*(c) : (+
: allpassnn(n-1,tv))~(*(-s))) : _, mem*c : +
with { c = cos(ba.take(n,tv)); s = sin(ba.take(n,tv)); };
//---------------`(fi.)allpassnkl`-----------------
// Kelly-Lochbaum form - four multiplies and two adds per
// section, but all signals have an immediate physical
// interpretation as traveling pressure waves, etc.
//
// #### Usage:
//
// ```
// _ : allpassnkl(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflection coefficients (-1 1)
//----------------------------------------------
// Kelly-Lochbaum:
declare allpassnnkl author "Julius O. Smith III";
declare allpassnnkl copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpassnnkl license "MIT-style STK-4.3 license";
allpassnkl(0,sv) = _;
allpassnkl(n,sv) = _ <: *(s),(*(1+s) : (+
: allpassnkl(n-1,sv))~(*(-s))) : _, mem*(1-s) : +
with { s = ba.take(n,sv); };
//---------------`(fi.)allpass1m`-----------------
// One-multiply form - one multiply and three adds per section.
// Normally the most efficient in special-purpose hardware.
//
// #### Usage:
//
// ```
// _ : allpassn1m(n,sv) : _
// ```
//
// Where:
//
// * `n`: the order of the filter
// * `sv`: the reflection coefficients (-1 1)
//----------------------------------------------
// one-multiply:
declare allpassn1m author "Julius O. Smith III";
declare allpassn1m copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare allpassn1m license "MIT-style STK-4.3 license";
allpassn1m(0,sv) = _;
allpassn1m(n,sv) = _ <: _,_ : ((+:*(s) <: _,_),_ : _,+ : cross
: allpassn1m(n-1,sv),_)~(*(-1)) : _',_ : +
with { s = ba.take(n,sv); cross = _,_ <: !,_,_,!; };
//===========Digital Filter Sections Specified as Analog Filter Sections==================
//========================================================================================
//-------------------------`(fi.)tf2s` and `(fi.)tf2snp`--------------------------------
// Second-order direct-form digital filter,
// specified by ANALOG transfer-function polynomials B(s)/A(s),
// and a frequency-scaling parameter. Digitization via the
// bilinear transform is built in.
//
// #### Usage
//
// ```
// _ : tf2s(b2,b1,b0,a1,a0,w1) : _
// ```
// Where:
//
// ```
// b2 s^2 + b1 s + b0
// H(s) = --------------------
// s^2 + a1 s + a0
// ```
//
// and `w1` is the desired digital frequency (in radians/second)
// corresponding to analog frequency 1 rad/sec (i.e., `s = j`).
//
// #### Example test program
//
// A second-order ANALOG Butterworth lowpass filter,
// normalized to have cutoff frequency at 1 rad/sec,
// has transfer function:
//
// ```
// 1
// H(s) = -----------------
// s^2 + a1 s + 1
// ```
//
// where `a1 = sqrt(2)`. Therefore, a DIGITAL Butterworth lowpass
// cutting off at `SR/4` is specified as `tf2s(0,0,1,sqrt(2),1,PI*SR/2);`
//
// #### Method
//
// Bilinear transform scaled for exact mapping of w1.
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html>
//----------------------------------------------
declare tf2s author "Julius O. Smith III";
declare tf2s copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf2s license "MIT-style STK-4.3 license";
tf2s(b2,b1,b0,a1,a0,w1) = tf2(b0d,b1d,b2d,a1d,a2d)
with {
c = 1/tan(w1*0.5/ma.SR); // bilinear-transform scale-factor
csq = c*c;
d = a0 + a1 * c + csq;
b0d = (b0 + b1 * c + b2 * csq)/d;
b1d = 2 * (b0 - b2 * csq)/d;
b2d = (b0 - b1 * c + b2 * csq)/d;
a1d = 2 * (a0 - csq)/d;
a2d = (a0 - a1*c + csq)/d;
};
// tf2snp = tf2s but using a protected normalized ladder filter for tf2:
tf2snp(b2,b1,b0,a1,a0,w1) = tf2np(b0d,b1d,b2d,a1d,a2d)
with {
c = 1/tan(w1*0.5/ma.SR); // bilinear-transform scale-factor
csq = c*c;
d = a0 + a1 * c + csq;
b0d = (b0 + b1 * c + b2 * csq)/d;
b1d = 2 * (b0 - b2 * csq)/d;
b2d = (b0 - b1 * c + b2 * csq)/d;
a1d = 2 * (a0 - csq)/d;
a2d = (a0 - a1*c + csq)/d;
};
//-----------------------------`(fi.)tf1snp`-------------------------------
// First-order special case of tf2snp above.
//
// #### Usage
//
// ```
// _ : tf1snp(b1,b0,a0) : _
// ```
//----------------------------------------------
declare tf1snp author "Julius O. Smith III";
declare tf1snp copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf1snp license "MIT-style STK-4.3 license";
tf1snp(b1,b0,a0,w1) = fi.tf2snp(b1,b0,0,a0,0,w1); // FIXME: Faust compiler does not fully optimize - does C++?
//-----------------------------`(fi.)tf3slf`-------------------------------
// Analogous to `tf2s` above, but third order, and using the typical
// low-frequency-matching bilinear-transform constant 2/T ("lf" series)
// instead of the specific-frequency-matching value used in `tf2s` and `tf1s`.
// Note the lack of a "w1" argument.
//
// #### Usage
//
// ```
// _ : tf3slf(b3,b2,b1,b0,a3,a2,a1,a0) : _
// ```
//----------------------------------------------
declare tf3slf author "Julius O. Smith III";
declare tf3slf copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf3slf license "MIT-style STK-4.3 license";
tf3slf(b3,b2,b1,b0,a3,a2,a1,a0) = tf3(b0d,b1d,b2d,b3d,a1d,a2d,a3d) with {
c = 2.0 * ma.SR; // bilinear-transform scale-factor ("lf" case)
csq = c*c;
cc = csq*c;
// Thank you maxima:
b3d = (b3*c^3-b2*c^2+b1*c-b0)/d;
b2d = (-3*b3*c^3+b2*c^2+b1*c-3*b0)/d;
b1d = (3*b3*c^3+b2*c^2-b1*c-3*b0)/d;
b0d = (-b3*c^3-b2*c^2-b1*c-b0)/d;
a3d = (a3*c^3-a2*c^2+a1*c-a0)/d;
a2d = (-3*a3*c^3+a2*c^2+a1*c-3*a0)/d;
a1d = (3*a3*c^3+a2*c^2-a1*c-3*a0)/d;
d = (-a3*c^3-a2*c^2-a1*c-a0);
};
//-----------------------------`(fi.)tf1s`--------------------------------
// First-order direct-form digital filter,
// specified by ANALOG transfer-function polynomials B(s)/A(s),
// and a frequency-scaling parameter.
//
// #### Usage
//
// ```
// _ : tf1s(b1,b0,a0,w1) : _
// ```
// Where:
//
// b1 s + b0
// H(s) = ----------
// s + a0
//
// and `w1` is the desired digital frequency (in radians/second)
// corresponding to analog frequency 1 rad/sec (i.e., `s = j`).
//
// #### Example test program
//
// A first-order ANALOG Butterworth lowpass filter,
// normalized to have cutoff frequency at 1 rad/sec,
// has transfer function:
//
// 1
// H(s) = -------
// s + 1
//
// so `b0 = a0 = 1` and `b1 = 0`. Therefore, a DIGITAL first-order
// Butterworth lowpass with gain -3dB at `SR/4` is specified as
//
// ```
// tf1s(0,1,1,PI*SR/2); // digital half-band order 1 Butterworth
// ```
//
// #### Method
//
// Bilinear transform scaled for exact mapping of w1.
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/pasp/Bilinear_Transformation.html>
//----------------------------------------------
declare tf1s author "Julius O. Smith III";
declare tf1s copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf1s license "MIT-style STK-4.3 license";
tf1s(b1,b0,a0,w1) = tf1(b0d,b1d,a1d)
with {
c = 1/tan(w1*0.5/ma.SR); // bilinear-transform scale-factor
d = a0 + c;
b1d = (b0 - b1*c) / d;
b0d = (b0 + b1*c) / d;
a1d = (a0 - c) / d;
};
//-----------------------------`(fi.)tf2sb`--------------------------------
// Bandpass mapping of `tf2s`: In addition to a frequency-scaling parameter
// `w1` (set to HALF the desired passband width in rad/sec),
// there is a desired center-frequency parameter wc (also in rad/s).
// Thus, `tf2sb` implements a fourth-order digital bandpass filter section
// specified by the coefficients of a second-order analog lowpass prototype
// section. Such sections can be combined in series for higher orders.
// The order of mappings is (1) frequency scaling (to set lowpass cutoff w1),
// (2) bandpass mapping to wc, then (3) the bilinear transform, with the
// usual scale parameter `2*SR`. Algebra carried out in maxima and pasted here.
//
// #### Usage
//
// ```
// _ : tf2sb(b2,b1,b0,a1,a0,w1,wc) : _
// ```
//----------------------------------------------
declare tf2sb author "Julius O. Smith III";
declare tf2sb copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf2sb license "MIT-style STK-4.3 license";
tf2sb(b2,b1,b0,a1,a0,w1,wc) =
iir((b0d/a0d,b1d/a0d,b2d/a0d,b3d/a0d,b4d/a0d),(a1d/a0d,a2d/a0d,a3d/a0d,a4d/a0d)) with {
T = 1.0/float(ma.SR);
b0d = (4*b0*w1^2+8*b2*wc^2)*T^2+8*b1*w1*T+16*b2;
b1d = 4*b2*wc^4*T^4+4*b1*wc^2*w1*T^3-16*b1*w1*T-64*b2;
b2d = 6*b2*wc^4*T^4+(-8*b0*w1^2-16*b2*wc^2)*T^2+96*b2;
b3d = 4*b2*wc^4*T^4-4*b1*wc^2*w1*T^3+16*b1*w1*T-64*b2;
b4d = (b2*wc^4*T^4-2*b1*wc^2*w1*T^3+(4*b0*w1^2+8*b2*wc^2)*T^2-8*b1*w1*T+16*b2)
+ b2*wc^4*T^4+2*b1*wc^2*w1*T^3;
a0d = wc^4*T^4+2*a1*wc^2*w1*T^3+(4*a0*w1^2+8*wc^2)*T^2+8*a1*w1*T+16;
a1d = 4*wc^4*T^4+4*a1*wc^2*w1*T^3-16*a1*w1*T-64;
a2d = 6*wc^4*T^4+(-8*a0*w1^2-16*wc^2)*T^2+96;
a3d = 4*wc^4*T^4-4*a1*wc^2*w1*T^3+16*a1*w1*T-64;
a4d = wc^4*T^4-2*a1*wc^2*w1*T^3+(4*a0*w1^2+8*wc^2)*T^2-8*a1*w1*T+16;
};
//-----------------------------`(fi.)tf1sb`--------------------------------
// First-to-second-order lowpass-to-bandpass section mapping,
// analogous to tf2sb above.
//
// #### Usage
//
// ```
// _ : tf1sb(b1,b0,a0,w1,wc) : _
// ```
//----------------------------------------------
declare tf1sb author "Julius O. Smith III";
declare tf1sb copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare tf1sb license "MIT-style STK-4.3 license";
tf1sb(b1,b0,a0,w1,wc) = tf2(b0d/a0d,b1d/a0d,b2d/a0d,a1d/a0d,a2d/a0d) with {
T = 1.0/float(ma.SR);
a0d = wc^2*T^2+2*a0*w1*T+4;
b0d = b1*wc^2*T^2 +2*b0*w1*T+4*b1;
b1d = 2*b1*wc^2*T^2-8*b1;
b2d = b1*wc^2*T^2-2*b0*w1*T+4*b1;
a1d = 2*wc^2*T^2-8;
a2d = wc^2*T^2-2*a0*w1*T+4;
};
//==============================Simple Resonator Filters==================================
//========================================================================================
//------------------`(fi.)resonlp`-----------------
// Simple resonant lowpass filter based on `tf2s` (virtual analog).
// `resonlp` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : resonlp(fc,Q,gain) : _
// _ : resonhp(fc,Q,gain) : _
// _ : resonbp(fc,Q,gain) : _
//
// ```
//
// Where:
//
// * `fc`: center frequency (Hz)
// * `Q`: q
// * `gain`: gain (0-1)
//---------------------------------------------------------------------
// resonlp = 2nd-order lowpass with corner resonance:
declare resonlp author "Julius O. Smith III";
declare resonlp copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare resonlp license "MIT-style STK-4.3 license";
resonlp(fc,Q,gain) = tf2s(b2,b1,b0,a1,a0,wc)
with {
wc = 2*ma.PI*fc;
a1 = 1/Q;
a0 = 1;
b2 = 0;
b1 = 0;
b0 = gain;
};
//------------------`(fi.)resonhp`-----------------
// Simple resonant highpass filters based on `tf2s` (virtual analog).
// `resonhp` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : resonlp(fc,Q,gain) : _
// _ : resonhp(fc,Q,gain) : _
// _ : resonbp(fc,Q,gain) : _
//
// ```
//
// Where:
//
// * `fc`: center frequency (Hz)
// * `Q`: q
// * `gain`: gain (0-1)
//---------------------------------------------------------------------
// resonhp = 2nd-order highpass with corner resonance:
declare resonhp author "Julius O. Smith III";
declare resonhp copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare resonhp license "MIT-style STK-4.3 license";
resonhp(fc,Q,gain,x) = gain*x-resonlp(fc,Q,gain,x);
//------------------`(fi.)resonbp`-----------------
// Simple resonant bandpass filters based on `tf2s` (virtual analog).
// `resonbp` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : resonlp(fc,Q,gain) : _
// _ : resonhp(fc,Q,gain) : _
// _ : resonbp(fc,Q,gain) : _
//
// ```
//
// Where:
//
// * `fc`: center frequency (Hz)
// * `Q`: q
// * `gain`: gain (0-1)
//---------------------------------------------------------------------
// resonbp = 2nd-order bandpass
declare resonbp author "Julius O. Smith III";
declare resonbp copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare resonbp license "MIT-style STK-4.3 license";
resonbp(fc,Q,gain) = tf2s(b2,b1,b0,a1,a0,wc)
with {
wc = 2*ma.PI*fc;
a1 = 1/Q;
a0 = 1;
b2 = 0;
b1 = gain;
b0 = 0;
};
//======================Butterworth Lowpass/Highpass Filters==============================
//========================================================================================
//----------------`(fi.)lowpass`--------------------
// Nth-order Butterworth lowpass filter.
// `lowpass` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : lowpass(N,fc) : _
// ```
//
// Where:
//
// * `N`: filter order (number of poles), nonnegative constant numerical expression
// * `fc`: desired cut-off frequency (-3dB frequency) in Hz
//
// #### References
// * <https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html>
// * `butter` function in Octave `("[z,p,g] = butter(N,1,'s');")`
//------------------------------
declare lowpass author "Julius O. Smith III";
declare lowpass copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare lowpass license "MIT-style STK-4.3 license";
lowpass(N,fc) = lowpass0_highpass1(0,N,fc);
//----------------`(fi.)highpass`--------------------
// Nth-order Butterworth highpass filter.
// `highpass` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : highpass(N,fc) : _
// ```
//
// Where:
//
// * `N`: filter order (number of poles), nonnegative constant numerical expression
// * `fc`: desired cut-off frequency (-3dB frequency) in Hz
//
// #### References
// * <https://ccrma.stanford.edu/~jos/filters/Butterworth_Lowpass_Design.html>
// * `butter` function in Octave `("[z,p,g] = butter(N,1,'s');")`
//------------------------------
declare highpass author "Julius O. Smith III";
declare highpass copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare higpass license "MIT-style STK-4.3 license";
highpass(N,fc) = lowpass0_highpass1(1,N,fc);
//-------------`(fi.)lowpass0_highpass1`--------------
declare lowpass0_highpass1 author "Julius O. Smith III";
declare lowpass0_highpass1 "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare lowpass0_highpass1 "MIT-style STK-4.3 license";
lowpass0_highpass1(s,N,fc) = lphpr(s,N,N,fc)
with {
lphpr(s,0,N,fc) = _;
lphpr(s,1,N,fc) = tf1s(s,1-s,1,2*ma.PI*fc);
lphpr(s,O,N,fc) = lphpr(s,(O-2),N,fc) : tf2s(s,0,1-s,a1s,1,w1) with {
parity = N % 2;
S = (O-parity)/2; // current section number
a1s = -2*cos((ma.PI)*-1 + (1-parity)*ma.PI/(2*N) + (S-1+parity)*ma.PI/N);
w1 = 2*ma.PI*fc;
};
};
//================Special Filter-Bank Delay-Equalizing Allpass Filters====================
// These special allpass filters are needed by filterbank et al. below.
// They are equivalent to (`lowpass(N,fc)` +|- `highpass(N,fc))/2`, but with
// canceling pole-zero pairs removed (which occurs for odd N).
//========================================================================================
//--------------------`(fi.)lowpass_plus`|`minus_highpass`----------------
declare highpass_plus_lowpass author "Julius O. Smith III";
declare highpass_plus_lowpass copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highpass_plus_lowpass license "MIT-style STK-4.3 license";
highpass_plus_lowpass(1,fc) = _;
highpass_plus_lowpass(3,fc) = tf2s(1,-1,1,1,1,w1) with { w1 = 2*ma.PI*fc; };
highpass_plus_lowpass(5,fc) = tf2s(1,-a11,1,a11,1,w1)
with {
a11 = 1.618033988749895;
w1 = 2*ma.PI*fc;
};
// Catch-all definitions for generality - even order is done:
highpass_plus_lowpass(N,fc) = _ <: switch_odd_even(N%2,N,fc) with {
switch_odd_even(0,N,fc) = highpass_plus_lowpass_even(N,fc);
switch_odd_even(1,N,fc) = highpass_plus_lowpass_odd(N,fc);
};
declare highpass_minus_lowpass author "Julius O. Smith III";
declare highpass_minus_lowpass copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highpass_minus_lowpass license "MIT-style STK-4.3 license";
highpass_minus_lowpass(3,fc) = tf1s(-1,1,1,w1) with { w1 = 2*ma.PI*fc; };
highpass_minus_lowpass(5,fc) = tf1s(1,-1,1,w1) : tf2s(1,-a12,1,a12,1,w1)
with {
a12 = 0.618033988749895;
w1 = 2*ma.PI*fc;
};
// Catch-all definitions for generality - even order is done:
highpass_minus_lowpass(N,fc) = _ <: switch_odd_even(N%2,N,fc) with {
switch_odd_even(0,N,fc) = highpass_minus_lowpass_even(N,fc);
switch_odd_even(1,N,fc) = highpass_minus_lowpass_odd(N,fc);
};
declare highpass_plus_lowpass_even author "Julius O. Smith III";
declare highpass_plus_lowpass_even copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highpass_plus_lowpass_even license "MIT-style STK-4.3 license";
highpass_plus_lowpass_even(N,fc) = highpass(N,fc) + lowpass(N,fc);
declare highpass_minus_lowpass_even author "Julius O. Smith III";
declare highpass_minus_lowpass_even copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highpass_plus_lowpass_even license "MIT-style STK-4.3 license";
highpass_minus_lowpass_even(N,fc) = highpass(N,fc) - lowpass(N,fc);
declare highpass_plus_lowpass_odd author "Julius O. Smith III";
declare highpass_plus_lowpass_odd copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highpass_plus_lowpass_odd license "MIT-style STK-4.3 license";
// FIXME: Rewrite the following, as for orders 3 and 5 above,
// to eliminate pole-zero cancellations:
highpass_plus_lowpass_odd(N,fc) = highpass(N,fc) + lowpass(N,fc);
declare highpass_minus_lowpass_odd author "Julius O. Smith III";
declare highpass_minus_lowpass_odd copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highpass_plus_lowpass_odd license "MIT-style STK-4.3 license";
// FIXME: Rewrite the following, as for orders 3 and 5 above,
// to eliminate pole-zero cancellations:
highpass_minus_lowpass_odd(N,fc) = highpass(N,fc) - lowpass(N,fc);
//==========================Elliptic (Cauer) Lowpass Filters==============================
// Elliptic (Cauer) Lowpass Filters
//
// #### References
// * <http://en.wikipedia.org/wiki/Elliptic_filter>
// * functions `ncauer` and `ellip` in Octave.
//========================================================================================
//-----------------------------`(fi.)lowpass3e`-----------------------------
// Third-order Elliptic (Cauer) lowpass filter.
//
// #### Usage
//
// ```
// _ : lowpass3e(fc) : _
// ```
//
// Where:
//
// * `fc`: -3dB frequency in Hz
//
// #### Design
//
// For spectral band-slice level display (see `octave_analyzer3e`):
//
// ```
// [z,p,g] = ncauer(Rp,Rs,3); % analog zeros, poles, and gain, where
// Rp = 60 % dB ripple in stopband
// Rs = 0.2 % dB ripple in passband
// ```
//---------------------------------------------------------------------
declare lowpass3e author "Julius O. Smith III";
declare lowpass3e copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare lowpass3e license "MIT-style STK-4.3 license";
lowpass3e(fc) = tf2s(b21,b11,b01,a11,a01,w1) : tf1s(0,1,a02,w1)
with {
a11 = 0.802636764161030; // format long; poly(p(1:2)) % in octave
a01 = 1.412270893774204;
a02 = 0.822445908998816; // poly(p(3)) % in octave
b21 = 0.019809144837789; // poly(z)
b11 = 0;
b01 = 1.161516418982696;
w1 = 2*ma.PI*fc;
};
//-----------------------------`(fi.)lowpass6e`-----------------------------
// Sixth-order Elliptic/Cauer lowpass filter.
//
// #### Usage
//
// ```
// _ : lowpass6e(fc) : _
// ```
//
// Where:
//
// * `fc`: -3dB frequency in Hz
//
// #### Design
//
// For spectral band-slice level display (see octave_analyzer6e):
//
// ```
// [z,p,g] = ncauer(Rp,Rs,6); % analog zeros, poles, and gain, where
// Rp = 80 % dB ripple in stopband
// Rs = 0.2 % dB ripple in passband
// ```
//----------------------------------------------------------------------
declare lowpass6e author "Julius O. Smith III";
declare lowpass6e copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare lowpass6e license "MIT-style STK-4.3 license";
lowpass6e(fc) =
tf2s(b21,b11,b01,a11,a01,w1) :
tf2s(b22,b12,b02,a12,a02,w1) :
tf2s(b23,b13,b03,a13,a03,w1)
with {
b21 = 0.000099999997055;
a21 = 1;
b11 = 0;
a11 = 0.782413046821645;
b01 = 0.000433227200555;
a01 = 0.245291508706160;
b22 = 1;
a22 = 1;
b12 = 0;
a12 = 0.512478641889141;
b02 = 7.621731298870603;
a02 = 0.689621364484675;
b23 = 1;
a23 = 1;
b13 = 0;
a13 = 0.168404871113589;
b03 = 53.536152954556727;
a03 = 1.069358407707312;
w1 = 2*ma.PI*fc;
};
//=========================Elliptic Highpass Filters======================================
//========================================================================================
//-----------------------------`(fi.)highpass3e`-----------------------------
// Third-order Elliptic (Cauer) highpass filter. Inversion of `lowpass3e` wrt unit
// circle in s plane (s <- 1/s).
//
// #### Usage
//
// ```
// _ : highpass3e(fc) : _
// ```
//
// Where:
//
// * `fc`: -3dB frequency in Hz
//-------------------------------------------------------------------------
declare highpass3e author "Julius O. Smith III";
declare highpass3e copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highpass3e license "MIT-style STK-4.3 license";
highpass3e(fc) = tf2s(b01/a01,b11/a01,b21/a01,a11/a01,1/a01,w1) :
tf1s(1/a02,0,1/a02,w1)
with {
a11 = 0.802636764161030;
a01 = 1.412270893774204;
a02 = 0.822445908998816;
b21 = 0.019809144837789;
b11 = 0;
b01 = 1.161516418982696;
w1 = 2*ma.PI*fc;
};
//-----------------------------`(fi.)highpass6e`-----------------------------
// Sixth-order Elliptic/Cauer highpass filter. Inversion of `lowpass3e` wrt unit
// circle in s plane (s <- 1/s).
//
// #### Usage
//
// ```
// _ : highpass6e(fc) : _
// ```
//
// Where:
//
// * `fc`: -3dB frequency in Hz
//-------------------------------------------------------------------------
declare highpass6e author "Julius O. Smith III";
declare highpass6e copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highpass6e license "MIT-style STK-4.3 license";
highpass6e(fc) =
tf2s(b01/a01,b11/a01,b21/a01,a11/a01,1/a01,w1) :
tf2s(b02/a02,b12/a02,b22/a02,a12/a02,1/a02,w1) :
tf2s(b03/a03,b13/a03,b23/a03,a13/a03,1/a03,w1)
with {
b21 = 0.000099999997055;
a21 = 1;
b11 = 0;
a11 = 0.782413046821645;
b01 = 0.000433227200555;
a01 = 0.245291508706160;
b22 = 1;
a22 = 1;
b12 = 0;
a12 = 0.512478641889141;
b02 = 7.621731298870603;
a02 = 0.689621364484675;
b23 = 1;
a23 = 1;
b13 = 0;
a13 = 0.168404871113589;
b03 = 53.536152954556727;
a03 = 1.069358407707312;
w1 = 2*ma.PI*fc;
};
//========================Butterworth Bandpass/Bandstop Filters===========================
//========================================================================================
//--------------------`(fi.)bandpass`----------------
// Order 2*Nh Butterworth bandpass filter made using the transformation
// `s <- s + wc^2/s` on `lowpass(Nh)`, where `wc` is the desired bandpass center
// frequency. The `lowpass(Nh)` cutoff `w1` is half the desired bandpass width.
// `bandpass` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : bandpass(Nh,fl,fu) : _
// ```
//
// Where:
//
// * `Nh`: HALF the desired bandpass order (which is therefore even)
// * `fl`: lower -3dB frequency in Hz
// * `fu`: upper -3dB frequency in Hz
// Thus, the passband width is `fu-fl`,
// and its center frequency is `(fl+fu)/2`.
//
//-------------------------------------------------------------------------
declare bandpass author "Julius O. Smith III";
declare bandpass copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare bandpass license "MIT-style STK-4.3 license";
bandpass(Nh,fl,fu) = bandpass0_bandstop1(0,Nh,fl,fu);
//--------------------`(fi.)bandstop`----------------
// Order 2*Nh Butterworth bandstop filter made using the transformation
// `s <- s + wc^2/s` on `highpass(Nh)`, where `wc` is the desired bandpass center
// frequency. The `highpass(Nh)` cutoff `w1` is half the desired bandpass width.
// `bandstop` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : bandstop(Nh,fl,fu) : _
// ```
// Where:
//
// * `Nh`: HALF the desired bandstop order (which is therefore even)
// * `fl`: lower -3dB frequency in Hz
// * `fu`: upper -3dB frequency in Hz
// Thus, the passband (stopband) width is `fu-fl`,
// and its center frequency is `(fl+fu)/2`.
//
//-------------------------------------------------------------------------
declare bandstop author "Julius O. Smith III";
declare bandstop copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare bandstop license "MIT-style STK-4.3 license";
bandstop(Nh,fl,fu) = bandpass0_bandstop1(1,Nh,fl,fu);
declare bandpass0_bandstop1 author "Julius O. Smith III";
declare bandpass0_bandstop1 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare bandpass0_bandstop1 license "MIT-style STK-4.3 license";
bandpass0_bandstop1(s,Nh,fl,fu) = bpbsr(s,Nh,Nh,fl,fu)
with {
wl = 2*ma.PI*fl; // digital (z-plane) lower passband edge
wu = 2*ma.PI*fu; // digital (z-plane) upper passband edge
c = 2.0*ma.SR; // bilinear transform scaling used in tf2sb, tf1sb
wla = c*tan(wl/c); // analog (s-plane) lower cutoff
wua = c*tan(wu/c); // analog (s-plane) upper cutoff
wc = sqrt(wla*wua); // s-plane center frequency
w1 = wua - wc^2/wua; // s-plane lowpass prototype cutoff
bpbsr(s,0,Nh,fl,fu) = _;
bpbsr(s,1,Nh,fl,fu) = tf1sb(s,1-s,1,w1,wc);
bpbsr(s,O,Nh,fl,fu) = bpbsr(s,O-2,Nh,fl,fu) : tf2sb(s,0,(1-s),a1s,1,w1,wc)
with {
parity = Nh % 2;
S = (O-parity)/2; // current section number
a1s = -2*cos(-1*ma.PI + (1-parity)*ma.PI/(2*Nh) + (S-1+parity)*ma.PI/Nh);
};
};
//===========================Elliptic Bandpass Filters====================================
//========================================================================================
//---------------------`(fi.)bandpass6e`-----------------------------
// Order 12 elliptic bandpass filter analogous to `bandpass(6)`.
//--------------------------------------------------------------
declare bandpass6e author "Julius O. Smith III";
declare bandpass6e copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare bandpass6e license "MIT-style STK-4.3 license";
bandpass6e(fl,fu) = tf2sb(b21,b11,b01,a11,a01,w1,wc) : tf1sb(0,1,a02,w1,wc)
with {
a11 = 0.802636764161030; // In octave: format long; poly(p(1:2))
a01 = 1.412270893774204;
a02 = 0.822445908998816; // poly(p(3))
b21 = 0.019809144837789; // poly(z)
b11 = 0;
b01 = 1.161516418982696;
wl = 2*ma.PI*fl; // digital (z-plane) lower passband edge
wu = 2*ma.PI*fu; // digital (z-plane) upper passband edge
c = 2.0*ma.SR; // bilinear transform scaling used in tf2sb, tf1sb
wla = c*tan(wl/c); // analog (s-plane) lower cutoff
wua = c*tan(wu/c); // analog (s-plane) upper cutoff
wc = sqrt(wla*wua); // s-plane center frequency
w1 = wua - wc^2/wua; // s-plane lowpass cutoff
};
//----------------------`(fi.)bandpass12e`---------------------------
// Order 24 elliptic bandpass filter analogous to `bandpass(6)`.
//--------------------------------------------------------------
declare bandpass12e author "Julius O. Smith III";
declare bandpass12e copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare bandpass12e license "MIT-style STK-4.3 license";
bandpass12e(fl,fu) =
tf2sb(b21,b11,b01,a11,a01,w1,wc) :
tf2sb(b22,b12,b02,a12,a02,w1,wc) :
tf2sb(b23,b13,b03,a13,a03,w1,wc)
with { // octave script output:
b21 = 0.000099999997055;
a21 = 1;
b11 = 0;
a11 = 0.782413046821645;
b01 = 0.000433227200555;
a01 = 0.245291508706160;
b22 = 1;
a22 = 1;
b12 = 0;
a12 = 0.512478641889141;
b02 = 7.621731298870603;
a02 = 0.689621364484675;
b23 = 1;
a23 = 1;
b13 = 0;
a13 = 0.168404871113589;
b03 = 53.536152954556727;
a03 = 1.069358407707312;
wl = 2*ma.PI*fl; // digital (z-plane) lower passband edge
wu = 2*ma.PI*fu; // digital (z-plane) upper passband edge
c = 2.0*ma.SR; // bilinear transform scaling used in tf2sb, tf1sb
wla = c*tan(wl/c); // analog (s-plane) lower cutoff
wua = c*tan(wu/c); // analog (s-plane) upper cutoff
wc = sqrt(wla*wua); // s-plane center frequency
w1 = wua - wc^2/wua; // s-plane lowpass cutoff
};
//------------------------`(fi.)pospass`---------------------------
// Positive-Pass Filter (single-side-band filter).
//
// #### Usage
//
// ```
// _ : pospass(N,fc) : _,_
// ```
//
// where
//
// * `N`: filter order (Butterworth bandpass for positive frequencies).
// * `fc`: lower bandpass cutoff frequency in Hz.
// - Highpass cutoff frequency at ma.SR/2 - fc Hz.
//
// #### Example test program
//
// * See `dm.pospass_demo`
// * Look at frequency response
//
// #### Method
//
// A filter passing only positive frequencies can be made from a
// half-band lowpass by modulating it up to the positive-frequency range.
// Equivalently, down-modulate the input signal using a complex sinusoid at -SR/4 Hz,
// lowpass it with a half-band filter, and modulate back up by SR/4 Hz.
// In Faust/math notation:
// $$pospass(N) = \ast(e^{-j\frac{\pi}{2}n}) : \mbox{lowpass(N,SR/4)} : \ast(e^{j\frac{\pi}{2}n})$$
//
// An approximation to the Hilbert transform is given by the
// imaginary output signal:
//
// ```
// hilbert(N) = pospass(N) : !,*(2);
// ```
//
// #### References
// * <https://ccrma.stanford.edu/~jos/mdft/Analytic_Signals_Hilbert_Transform.html>
// * <https://ccrma.stanford.edu/~jos/sasp/Comparison_Optimal_Chebyshev_FIR_I.html>
// * <https://ccrma.stanford.edu/~jos/sasp/Hilbert_Transform.html>
//------------------------------------------------------------
declare pospass author "Julius O. Smith III";
declare pospass copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare pospass license "MIT-style STK-4.3 license";
pospass(N,fc) = fi.pospass0(lpf) with {
fcs = ma.SR/4 - fc; // Upper lowpass cutoff = (SR/2 - fc) - SR/4
lpf = fi.lowpass(N,fcs); // Butterworth lowpass
};
declare pospass6e author "Julius O. Smith III";
declare pospass6e copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare pospass6e license "MIT-style STK-4.3 license";
pospass6e(fc) = fi.pospass0(lpf) with {
lpf = fi.lowpass6e(ma.SR/4 - fc); // Elliptic lowpass, order 6
};
declare pospass0 author "Julius O. Smith III";
declare pospass0 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare pospass0 license "MIT-style STK-4.3 license";
pospass0(lpf) = unmodulate : lpf, lpf : modulate with {
c = 1-1' : +~(*(-1):mem); // complex sinusoid rotating at SR/4
s = c'; // ||: 0, 1, 0, -1 :||
unmodulate = _ <: *(c),*(-s); // subtract SR/4 from all input frequencies
modulate(x,y) = c*x-s*y, c*y + s*x; // add SR/4 to all frequencies
};
//=================Parametric Equalizers (Shelf, Peaking)=================================
// Parametric Equalizers (Shelf, Peaking).
//
// #### References
// * <http://en.wikipedia.org/wiki/Equalization>
// * <https://webaudio.github.io/Audio-EQ-Cookbook/Audio-EQ-Cookbook.txt>
// * Digital Audio Signal Processing, Udo Zolzer, Wiley, 1999, p. 124
// * <https://ccrma.stanford.edu/~jos/filters/Low_High_Shelving_Filters.html>
// * <https://ccrma.stanford.edu/~jos/filters/Peaking_Equalizers.html>
// * maxmsp.lib in the Faust distribution
// * bandfilter.dsp in the faust2pd distribution
//========================================================================================
//----------------------`(fi.)low_shelf`----------------------
// First-order "low shelf" filter (gain boost|cut between dc and some frequency)
// `low_shelf` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : lowshelf(N,L0,fx) : _
// _ : low_shelf(L0,fx) : _ // default case (order 3)
// _ : lowshelf_other_freq(N,L0,fx) : _
// ```
//
// Where:
// * `N`: filter order 1, 3, 5, ... (odd only, default should be 3, a constant numerical expression)
// * `L0`: desired level (dB) between dc and fx (boost `L0>0` or cut `L0<0`)
// * `fx`: -3dB frequency of lowpass band (`L0>0`) or upper band (`L0<0`)
// (see "SHELF SHAPE" below).
//
// The gain at SR/2 is constrained to be 1.
// The generalization to arbitrary odd orders is based on the well known
// fact that odd-order Butterworth band-splits are allpass-complementary
// (see filterbank documentation below for references).
//
// #### Shelf Shape
// The magnitude frequency response is approximately piecewise-linear
// on a log-log plot ("BODE PLOT"). The Bode "stick diagram" approximation
// L(lf) is easy to state in dB versus dB-frequency lf = dB(f):
//
// * L0 > 0:
// * L(lf) = L0, f between 0 and fx = 1st corner frequency;
// * L(lf) = L0 - N * (lf - lfx), f between fx and f2 = 2nd corner frequency;
// * L(lf) = 0, lf > lf2.
// * lf2 = lfx + L0/N = dB-frequency at which level gets back to 0 dB.
// * L0 < 0:
// * L(lf) = L0, f between 0 and f1 = 1st corner frequency;
// * L(lf) = - N * (lfx - lf), f between f1 and lfx = 2nd corner frequency;
// * L(lf) = 0, lf > lfx.
// * lf1 = lfx + L0/N = dB-frequency at which level goes up from L0.
//
// See `lowshelf_other_freq`.
//
// #### References
// See "Parametric Equalizers" above for references regarding
// `low_shelf`, `high_shelf`, and `peak_eq`.
//
//--------------------------------------------------------------
declare lowshelf author "Julius O. Smith III";
declare lowshelf copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare lowshelf license "MIT-style STK-4.3 license";
lowshelf(N,L0,fx) = filterbank(N,(fx)) : _, *(ba.db2linear(L0)) :> _;
// Special cases and optimization:
declare low_shelf author "Julius O. Smith III";
declare low_shelf copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare low_shelf license "MIT-style STK-4.3 license";
low_shelf = lowshelf(3); // default = 3rd order Butterworth
declare low_shelf1 author "Julius O. Smith III";
declare low_shelf1 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare low_shelf1 license "MIT-style STK-4.3 license";
low_shelf1(L0,fx,x) = x + (ba.db2linear(L0)-1)*lowpass(1,fx,x); // optimized
declare low_shelf1_l author "Julius O. Smith III";
declare low_shelf1_l copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare low_shelf1_l license "MIT-style STK-4.3 license";
low_shelf1_l(G0,fx,x) = x + (G0-1)*lowpass(1,fx,x); // optimized
declare lowshelf_other_freq author "Julius O. Smith III";
declare lowshelf_other_freq copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare lowshelf_other_freq license "MIT-style STK-4.3 license";
lowshelf_other_freq(N, L0, fx) = ba.db2linear(ba.linear2db(fx) + L0/N); // convenience
//-------------`(fi.)high_shelf`--------------
// First-order "high shelf" filter (gain boost|cut above some frequency).
// `high_shelf` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : highshelf(N,Lpi,fx) : _
// _ : high_shelf(L0,fx) : _ // default case (order 3)
// _ : highshelf_other_freq(N,Lpi,fx) : _
// ```
//
// Where:
//
// * `N`: filter order 1, 3, 5, ... (odd only, a constant numerical expression).
// * `Lpi`: desired level (dB) between fx and SR/2 (boost Lpi>0 or cut Lpi<0)
// * `fx`: -3dB frequency of highpass band (L0>0) or lower band (L0<0)
// (Use highshelf_other_freq() below to find the other one.)
//
// The gain at dc is constrained to be 1.
// See `lowshelf` documentation above for more details on shelf shape.
//
// #### References
// See "Parametric Equalizers" above for references regarding
// `low_shelf`, `high_shelf`, and `peak_eq`.
//
//--------------------------------------------------------------
declare highshelf author "Julius O. Smith III";
declare highshelf copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highshelf license "MIT-style STK-4.3 license";
highshelf(N,Lpi,fx) = filterbank(N,(fx)) : *(ba.db2linear(Lpi)), _ :> _;
// Special cases and optimization:
high_shelf = highshelf(3); // default = 3rd order Butterworth
declare high_shelf1 author "Julius O. Smith III";
declare high_shelf1 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare high_shelf1 license "MIT-style STK-4.3 license";
high_shelf1(Lpi,fx,x) = x + (ba.db2linear(Lpi)-1)*highpass(1,fx,x); // optimized
declare high_shelf1_l author "Julius O. Smith III";
declare high_shelf1_l copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare high_shelf1_l license "MIT-style STK-4.3 license";
high_shelf1_l(Gpi,fx,x) = x + (Gpi-1)*highpass(1,fx,x); //optimized
// shelf transitions between frequency fx and this one:
declare highshelf_other_freq author "Julius O. Smith III";
declare highshelf_other_freq copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare highshelf_other_freq license "MIT-style STK-4.3 license";
highshelf_other_freq(N, Lpi, fx) = ba.db2linear(ba.linear2db(fx) - Lpi/N);
//-------------------`(fi.)peak_eq`------------------------------
// Second order "peaking equalizer" section (gain boost or cut near some frequency)
// Also called a "parametric equalizer" section.
// `peak_eq` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : peak_eq(Lfx,fx,B) : _
// ```
//
// Where:
//
// * `Lfx`: level (dB) at fx (boost Lfx>0 or cut Lfx<0)
// * `fx`: peak frequency (Hz)
// * `B`: bandwidth (B) of peak in Hz
//
// #### References
// See "Parametric Equalizers" above for references regarding
// `low_shelf`, `high_shelf`, and `peak_eq`.
//
//--------------------------------------------------------------
declare peak_eq author "Julius O. Smith III";
declare peak_eq copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare peak_eq license "MIT-style STK-4.3 license";
peak_eq(Lfx,fx,B) = tf2s(1,b1s,1,a1s,1,wx) with {
T = float(1.0/ma.SR);
Bw = B*T/sin(wx*T); // prewarp s-bandwidth for more accuracy in z-plane
a1 = ma.PI*Bw;
b1 = g*a1;
g = ba.db2linear(abs(Lfx));
b1s = select2(Lfx>0,a1,b1); // When Lfx>0, pole dominates bandwidth
a1s = select2(Lfx>0,b1,a1); // When Lfx<0, zero dominates
wx = 2*ma.PI*fx;
};
//--------------------`(fi.)peak_eq_cq`----------------------------
// Constant-Q second order peaking equalizer section.
//
// #### Usage
//
// ```
// _ : peak_eq_cq(Lfx,fx,Q) : _
// ```
//
// Where:
//
// * `Lfx`: level (dB) at fx
// * `fx`: boost or cut frequency (Hz)
// * `Q`: "Quality factor" = fx/B where B = bandwidth of peak in Hz
//
// #### References
// See "Parametric Equalizers" above for references regarding
// `low_shelf`, `high_shelf`, and `peak_eq`.
//
//------------------------------------------------------------
declare peak_eq_cq author "Julius O. Smith III";
declare peak_eq_cq copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare peak_eq_cq license "MIT-style STK-4.3 license";
peak_eq_cq(Lfx,fx,Q) = peak_eq(Lfx,fx,fx/Q);
//-------------------`(fi.)peak_eq_rm`--------------------------
// Regalia-Mitra second order peaking equalizer section.
//
// #### Usage
//
// ```
// _ : peak_eq_rm(Lfx,fx,tanPiBT) : _
// ```
//
// Where:
//
// * `Lfx`: level (dB) at fx
// * `fx`: boost or cut frequency (Hz)
// * `tanPiBT`: `tan(PI*B/SR)`, where B = -3dB bandwidth (Hz) when 10^(Lfx/20) = 0
// ~ PI*B/SR for narrow bandwidths B
//
// #### Reference
// P.A. Regalia, S.K. Mitra, and P.P. Vaidyanathan,
// "The Digital All-Pass Filter: A Versatile Signal Processing Building Block"
// Proceedings of the IEEE, 76(1):19-37, Jan. 1988. (See pp. 29-30.)
// See also "Parametric Equalizers" above for references on shelf
// and peaking equalizers in general.
//
//------------------------------------------------------------
declare peak_eq_rm author "Julius O. Smith III";
declare peak_eq_rm copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare peak_eq_rm license "MIT-style STK-4.3 license";
peak_eq_rm(Lfx,fx,tanPiBT) = _ <: _,A,_ : +,- : *(0.5),*(K/2.0) : + with {
A = tf2(k2, k1*(1+k2), 1, k1*(1+k2), k2) <: _,_; // allpass
k1 = 0.0 - cos(2.0*ma.PI*fx/ma.SR);
k2 = (1.0 - tanPiBT)/(1.0 + tanPiBT);
K = ba.db2linear(Lfx);
};
//---------------------`(fi.)spectral_tilt`-------------------------
// Spectral tilt filter, providing an arbitrary spectral rolloff factor
// alpha in (-1,1), where
// -1 corresponds to one pole (-6 dB per octave), and
// +1 corresponds to one zero (+6 dB per octave).
// In other words, alpha is the slope of the ln magnitude versus ln frequency.
// For a "pinking filter" (e.g., to generate 1/f noise from white noise),
// set alpha to -1/2.
//
// #### Usage
//
// ```
// _ : spectral_tilt(N,f0,bw,alpha) : _
// ```
// Where:
//
// * `N`: desired integer filter order (fixed at compile time)
// * `f0`: lower frequency limit for desired roll-off band > 0
// * `bw`: bandwidth of desired roll-off band
// * `alpha`: slope of roll-off desired in nepers per neper,
// between -1 and 1 (ln mag / ln radian freq)
//
// #### Example test program
//
// See `dm.spectral_tilt_demo` and the documentation for `no.pink_noise`.
//
// #### Reference
// J.O. Smith and H.F. Smith,
// "Closed Form Fractional Integration and Differentiation via Real Exponentially Spaced Pole-Zero Pairs",
// arXiv.org publication arXiv:1606.06154 [cs.CE], June 7, 2016,
// <http://arxiv.org/abs/1606.06154>
//
//------------------------------------------------------------
declare spectral_tilt author "Julius O. Smith III";
declare spectral_tilt copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare spectral_tilt license "MIT-style STK-4.3 license";
spectral_tilt(N,f0,bw,alpha) = seq(i,N,sec(i)) with {
sec(i) = g * tf1s(b1,b0,a0,1) with {
g = a0/b0; // unity dc-gain scaling
b1 = 1.0;
b0 = mzh(i);
a0 = mph(i);
mzh(i) = prewarp(mz(i),ma.SR,w0); // prewarping for bilinear transform
mph(i) = prewarp(mp(i),ma.SR,w0);
prewarp(w,SR,wp) = wp * tan(w*T/2) / tan(wp*T/2) with { T = 1/ma.SR; };
mz(i) = w0 * r ^ (-alpha+i); // minus zero i in s plane
mp(i) = w0 * r ^ i; // minus pole i in s plane
f0p = max(f0,ma.EPSILON); // cannot go to zero
w0 = 2 * ma.PI * f0p; // radian frequency of first pole
f1 = f0p + bw; // upper band limit
r = (f1/f0p)^(1.0/float(N-1)); // pole ratio (2 => octave spacing)
};
};
//----------------------`(fi.)levelfilter`----------------------
// Dynamic level lowpass filter.
// `levelfilter` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : levelfilter(L,freq) : _
// ```
//
// Where:
//
// * `L`: desired level (in dB) at Nyquist limit (SR/2), e.g., -60
// * `freq`: corner frequency (-3dB point) usually set to fundamental freq
// * `N`: Number of filters in series where L = L/N
//
// #### Reference
// <https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html>
//------------------------------------------------------------
declare levelfilter author "Julius O. Smith III";
declare levelfilter copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare levelfilter license "MIT-style STK-4.3 license";
levelfilter(L,freq,x) = (L * L0 * x) + ((1.0-L) * lp2out(x))
with {
L0 = pow(L,1/3);
Lw = ma.PI*freq/ma.SR; // = w1 T / 2
Lgain = Lw / (1.0 + Lw);
Lpole2 = (1.0 - Lw) / (1.0 + Lw);
lp2out = *(Lgain) : + ~ *(Lpole2);
};
//----------------------`(fi.)levelfilterN`----------------------
// Dynamic level lowpass filter.
//
// #### Usage
//
// ```
// _ : levelfilterN(N,freq,L) : _
// ```
//
// Where:
//
// * `N`: Number of filters in series where L = L/N, a constant numerical expression
// * `freq`: corner frequency (-3dB point) usually set to fundamental freq
// * `L`: desired level (in dB) at Nyquist limit (SR/2), e.g., -60
//
// #### Reference
// <https://ccrma.stanford.edu/realsimple/faust_strings/Dynamic_Level_Lowpass_Filter.html>
//------------------------------------------------------------
declare levelfilterN author "Julius O. Smith III";
declare levelfilterN copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare levelfilterN license "MIT-style STK-4.3 license";
levelfilterN(N,freq,L) = seq(i,N,levelfilter((L/N),freq));
//=================================Mth-Octave Filter-Banks================================
// Mth-octave filter-banks split the input signal into a bank of parallel signals, one
// for each spectral band. They are related to the Mth-Octave Spectrum-Analyzers in
// `analysis.lib`.
// The documentation of this library contains more details about the implementation.
// The parameters are:
//
// * `M`: number of band-slices per octave (>1), a constant numerical expression
// * `N`: total number of bands (>2), a constant numerical expression
// * `ftop`: upper bandlimit of the Mth-octave bands (<SR/2)
//
// In addition to the Mth-octave output signals, there is a highpass signal
// containing frequencies from ftop to SR/2, and a "dc band" lowpass signal
// containing frequencies from 0 (dc) up to the start of the Mth-octave bands.
// Thus, the N output signals are
//
// ```
// highpass(ftop), MthOctaveBands(M,N-2,ftop), dcBand(ftop*2^(-M*(N-1)))
// ```
//
// A Filter-Bank is defined here as a signal bandsplitter having the
// property that summing its output signals gives an allpass-filtered
// version of the filter-bank input signal. A more conventional term for
// this is an "allpass-complementary filter bank". If the allpass filter
// is a pure delay (and possible scaling), the filter bank is said to be
// a "perfect-reconstruction filter bank" (see Vaidyanathan-1993 cited
// below for details). A "graphic equalizer", in which band signals
// are scaled by gains and summed, should be based on a filter bank.
//
// The filter-banks below are implemented as Butterworth or Elliptic
// spectrum-analyzers followed by delay equalizers that make them
// allpass-complementary.
//
// #### Increasing Channel Isolation
//
// Go to higher filter orders - see Regalia et al. or Vaidyanathan (cited
// below) regarding the construction of more aggressive recursive
// filter-banks using elliptic or Chebyshev prototype filters.
//
// #### References
// * "Tree-structured complementary filter banks using all-pass sections",
// Regalia et al., IEEE Trans. Circuits & Systems, CAS-34:1470-1484, Dec. 1987
// * "Multirate Systems and Filter Banks", P. Vaidyanathan, Prentice-Hall, 1993
// * Elementary filter theory: <https://ccrma.stanford.edu/~jos/filters/>
//========================================================================================
//------------------------`(fi.)mth_octave_filterbank[n]`-------------------------
// Allpass-complementary filter banks based on Butterworth band-splitting.
// For Butterworth band-splits, the needed delay equalizer is easily found.
//
// #### Usage
//
// ```
// _ : mth_octave_filterbank(O,M,ftop,N) : par(i,N,_) // Oth-order
// _ : mth_octave_filterbank_alt(O,M,ftop,N) : par(i,N,_) // dc-inverted version
// ```
//
// Also for convenience:
//
// ```
// _ : mth_octave_filterbank3(M,ftop,N) : par(i,N,_) // 3rd-order Butterworth
// _ : mth_octave_filterbank5(M,ftop,N) : par(i,N,_) // 5th-order Butterworth
// mth_octave_filterbank_default = mth_octave_filterbank5;
// ```
//
// Where:
//
// * `O`: order of filter used to split each frequency band into two, a constant numerical expression
// * `M`: number of band-slices per octave, a constant numerical expression
// * `ftop`: highest band-split crossover frequency (e.g., 20 kHz)
// * `N`: total number of bands (including dc and Nyquist), a constant numerical expression
//------------------------------------------------------------
declare mth_octave_filterbank author "Julius O. Smith III";
declare mth_octave_filterbank copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare mth_octave_filterbank license "MIT-style STK-4.3 license";
mth_octave_filterbank(O,M,ftop,N) = an.mth_octave_analyzer(O,M,ftop,N) : delayeq(N)
with {
fc(n) = ftop * 2^(float(n-N+1)/float(M)); // -3dB crossover frequencies
ap(n) = highpass_plus_lowpass(O,fc(n)); // delay-equalizing allpass
delayeq(N) = par(i,N-2,apchain(i+1)), _, _;
apchain(i) = seq(j,N-1-i,ap(j+1));
};
// dc-inverted version. This reduces the delay-equalizer order for odd O.
// Negating the input signal makes the dc band noninverting
// and all higher bands sign-inverted (if preferred).
declare mth_octave_filterbank_alt author "Julius O. Smith III";
declare mth_octave_filterbank_alt copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare mth_octave_filterbank_alt license "MIT-style STK-4.3 license";
mth_octave_filterbank_alt(O,M,ftop,N) = an.mth_octave_analyzer(O,M,ftop,N) : delayeqi(O,N)
with {
fc(n) = ftop * 2^(float(n-N+1)/float(M)); // -3dB crossover frequencies
ap(n) = highpass_minus_lowpass(O,fc(n)); // half the order of 'plus' case
delayeqi(N) = par(i,N-2,apchain(i+1)), _, *(-1.0);
apchain(i) = seq(j,N-1-i,ap(j+1));
};
// Note that even-order cases require complex coefficients.
// See Vaidyanathan 1993 and papers cited there for more info.
declare mth_octave_filterbank3 author "Julius O. Smith III";
declare mth_octave_filterbank3 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare mth_octave_filterbank3 license "MIT-style STK-4.3 license";
mth_octave_filterbank3(M,ftop,N) = mth_octave_filterbank_alt(3,M,ftop,N);
declare mth_octave_filterbank5 author "Julius O. Smith III";
declare mth_octave_filterbank5 copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare mth_octave_filterbank5 license "MIT-style STK-4.3 license";
mth_octave_filterbank5(M,ftop,N) = mth_octave_filterbank(5,M,ftop,N);
declare mth_octave_filterbank_default author "Julius O. Smith III";
declare mth_octave_filterbank_default copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare mth_octave_filterbank_default license "MIT-style STK-4.3 license";
mth_octave_filterbank_default = mth_octave_filterbank5;
//===============Arbitrary-Crossover Filter-Banks and Spectrum Analyzers==================
// These are similar to the Mth-octave analyzers above, except that the
// band-split frequencies are passed explicitly as arguments.
//========================================================================================
// ACKNOWLEDGMENT
// Technique for processing a variable number of signal arguments due
// to Yann Orlarey (as is the entire Faust framework!)
//---------------`(fi.)filterbank`--------------------------
// Filter bank.
// `filterbank` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : filterbank (O,freqs) : par(i,N,_) // Butterworth band-splits
// ```
// Where:
//
// * `O`: band-split filter order (odd integer required for filterbank[i], a constant numerical expression)
// * `freqs`: (fc1,fc2,...,fcNs) [in numerically ascending order], where
// Ns=N-1 is the number of octave band-splits
// (total number of bands N=Ns+1).
//
// If frequencies are listed explicitly as arguments, enclose them in parens:
//
// ```
// _ : filterbank(3,(fc1,fc2)) : _,_,_
// ```
//---------------------------------------------------
declare filterbank author "Julius O. Smith III";
declare filterbank copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare filterbank license "MIT-style STK-4.3 license";
filterbank(O,lfreqs) = an.analyzer(O,lfreqs) : delayeq(nb)
with {
nb = ba.count(lfreqs);
fc(n) = ba.take(n, lfreqs);
ap(n) = highpass_plus_lowpass(O,fc(n));
delayeq(1) = _,_; // par(i,0,...) does not fly
delayeq(nb) = par(i,nb-1,apchain(nb-1-i)),_,_;
apchain(0) = _;
apchain(i) = ap(i) : apchain(i-1);
};
//-----------------`(fi.)filterbanki`----------------------
// Inverted-dc filter bank.
//
// #### Usage
//
// ```
// _ : filterbanki(O,freqs) : par(i,N,_) // Inverted-dc version
// ```
//
// Where:
//
// * `O`: band-split filter order (odd integer required for `filterbank[i]`, a constant numerical expression)
// * `freqs`: (fc1,fc2,...,fcNs) [in numerically ascending order], where
// Ns=N-1 is the number of octave band-splits
// (total number of bands N=Ns+1).
//
// If frequencies are listed explicitly as arguments, enclose them in parens:
//
// ```
// _ : filterbanki(3,(fc1,fc2)) : _,_,_
// ```
//---------------------------------------------------
declare filterbanki author "Julius O. Smith III";
declare filterbanki copyright "Copyright (C) 2003-2019 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare filterbanki license "MIT-style STK-4.3 license";
filterbanki(O,lfreqs) = _ <: bsplit(nb)
with {
nb = ba.count(lfreqs);
fc(n) = ba.take(n, lfreqs);
lp(n) = lowpass(O,fc(n));
hp(n) = highpass(O,fc(n));
ap(n) = highpass_minus_lowpass(O,fc(n));
bsplit(0) = *(-1.0);
bsplit(i) = (hp(i) : delayeq(i-1)), (lp(i) <: bsplit(i-1));
delayeq(0) = _; // moving the *(-1) here inverts all outputs BUT dc
delayeq(i) = ap(i) : delayeq(i-1);
};
//===============State Variable Filters=========================================================
// #### References
// Solving the continuous SVF equations using trapezoidal integration
//
// <https://cytomic.com/files/dsp/SvfLinearTrapOptimised2.pdf>
//========================================================================================
//-----------------`(fi.)svf`----------------------
// An environment with `lp`, `bp`, `hp`, `notch`, `peak`, `ap`, `bell`, `ls`, `hs` SVF based filters.
// All filters have `freq` and `Q` parameters, the `bell`, `ls`, `hs` ones also have a `gain` third parameter.
//
// #### Usage
//
// ```
// _ : svf.xx(freq, Q, [gain]) : _
// ```
//
// Where:
//
// * `freq`: cut frequency
// * `Q`: quality factor
// * `[gain]`: gain in dB
//
/// ```
//---------------------------------------------------
declare svf author "Oleg Nesterov";
declare svf copyright "Copyright (C) 2020 Oleg Nesterov <oleg@redhat.com>";
declare svf license "MIT-style STK-4.3 license";
svf = environment {
// Internal implementation
svf(T,F,Q,G) = tick ~ (_,_) : !,!,si.dot(3, mix)
with {
tick(ic1eq, ic2eq, v0) =
2*v1 - ic1eq,
2*v2 - ic2eq,
v0, v1, v2
with {
v1 = ic1eq + g *(v0-ic2eq) : /(1 + g*(g+k));
v2 = ic2eq + g * v1;
};
A = pow(10.0, G/40.0);
g = tan(F * ma.PI/ma.SR) : case {
(7) => /(sqrt(A));
(8) => *(sqrt(A));
(t) => _;
} (T);
k = case {
(6) => 1/(Q*A);
(t) => 1/Q;
} (T);
mix = case {
(0) => 0, 0, 1;
(1) => 0, 1, 0;
(2) => 1, -k, -1;
(3) => 1, -k, 0;
(4) => 1, -k, -2;
(5) => 1, -2*k, 0;
(6) => 1, k*(A*A-1), 0;
(7) => 1, k*(A-1), A*A-1;
(8) => A*A, k*(1-A)*A, 1-A*A;
} (T);
};
// External API
lp(f,q) = svf(0, f, q, 0);
bp(f,q) = svf(1, f, q, 0);
hp(f,q) = svf(2, f, q, 0);
notch(f,q) = svf(3, f, q, 0);
peak(f,q) = svf(4, f, q, 0);
ap(f,q) = svf(5, f, q, 0);
bell(f,q,g) = svf(6, f, q, g);
ls(f,q,g) = svf(7, f, q, g);
hs(f,q,g) = svf(8, f, q, g);
};
//-----------------`(fi.)svf_morph`--------------------
// An SVF-based filter that can smoothly morph between
// being lowpass, bandpass, and highpass.
//
// #### Usage
//
// ```
// _ : svf_morph(freq, Q, blend) : _
// ```
//
// Where:
//
// * `freq`: cutoff frequency
// * `Q`: quality factor
// * `blend`: [0..2] continuous, where 0 is `lowpass`, 1 is `bandpass`, and 2 is `highpass`. For performance, the value is not clamped to [0..2].
//
//
// #### Example test program
//
// ```
// process = no.noise : svf_morph(freq, q, blend)
// with {
// blend = hslider("Blend", 0, 0, 2, .01) : si.smoo;
// q = hslider("Q", 1, 0.1, 10, .01) : si.smoo;
// freq = hslider("freq", 5000, 100, 18000, 1) : si.smoo;
// };
// ```
//
// #### Reference
// <https://github.com/mtytel/vital/blob/636ca0ef517a4db087a6a08a6a8a5e704e21f836/src/synthesis/filters/digital_svf.cpp#L292-L295>
//-----------------------------------------------------
declare svf_morph author "David Braun and Clarence W. Rowley";
declare svf_morph copyright "Copyright (C) 2024 David Braun <braun@ccrma.stanford.edu>";
declare svf_morph license "MIT-style STK-4.3 license";
svf_morph(f, q, _b, x) = svf.lp(f,q,x)*w_LP + svf.bp(f,q,x)*w_BP + svf.hp(f,q,x)*w_HP
with {
b = _b - 1; // b is now -1 to 1.
w_LP = max(-b, 0);
w_BP = sqrt(1 - b^2);
w_HP = max(b, 0);
};
//-----------------`(fi.)svf_notch_morph`--------------------
// An SVF-based notch-filter that can smoothly morph between
// being lowpass, notch, and highpass.
//
// #### Usage
//
// ```
// _ : svf_notch_morph(freq, Q, blend) : _
// ```
//
// Where:
//
// * `freq`: cutoff frequency
// * `Q`: quality factor
// * `blend`: [0..2] continuous, where 0 is `lowpass`, 1 is `notch`, and 2 is `highpass`. For performance, the value is not clamped to [0..2].
//
//
// #### Example test program
//
// ```
// process = no.noise : svf_notch_morph(freq, q, blend)
// with {
// blend = hslider("Blend", 0, 0, 2, .01) : si.smoo;
// q = hslider("Q", 1, 0.1, 10, .01) : si.smoo;
// freq = hslider("freq", 5000, 100, 18000, 1) : si.smoo;
// };
// ```
//
// #### Reference
// <https://github.com/mtytel/vital/blob/636ca0ef517a4db087a6a08a6a8a5e704e21f836/src/synthesis/filters/digital_svf.cpp#L256C36-L263>
//-----------------------------------------------------------
declare svf_notch_morph author "David Braun and Clarence W. Rowley";
declare svf_notch_morph copyright "Copyright (C) 2024 David Braun <braun@ccrma.stanford.edu>";
declare svf_notch_morph license "MIT-style STK-4.3 license";
svf_notch_morph(f, q, _b, x) = svf.lp(f,q,x)*w_LP + svf.hp(f,q,x)*w_HP
with {
b = _b - 1; // b is now -1 to 1.
w_LP = min(1-b, 1);
w_HP = min(1+b, 1);
};
//----------`(fi.)SVFTPT`---------------------------------------------------------
//
// Topology-preserving transform implementation following Zavalishin's method.
//
// Outputs: lowpass, highpass, bandpass, normalised bandpass, notch, allpass,
// peaking.
//
// Each individual output can be recalled with its name in the environment as in:
// `SVFTPT.LP2(1000.0, .707)`.
//
// The 7 outputs can be recalled by using `SVF` name as in:
// `SVFTPT.SVF(1000.0, .707)`.
//
// Even though the implementation is different, the characteristics of this
// filter are comparable to those of the `svf` environment in this library.
//
// #### Usage:
//
// ```
// _ : SVFTPT.xxx(CF, Q) : _
// ```
//
// Where:
//
// * `xxx` can be one of the following: `LP2`, `HP2`, `BP2`, `BP2Norm`, `Notch2`, `AP2`, `Peaking2`
// * `CF`: cutoff in Hz
// * `Q`: resonance
//
//------------------------------------------------------------------------------
declare SVFTPT author "Dario Sanfilippo";
declare SVFTPT copyright
"Copyright (C) 2024 Dario Sanfilippo <sanfilippo.dario@gmail.com>";
declare SVFTPT license "MIT License";
SVFTPT = environment {
SVF(CF, Q, x) = f ~ si.bus(2) : (! , ! , _ , _ , _ , _ , _ , _ , _)
with {
g = tan(CF * ma.PI * ma.T);
R2 = 1.0 / Q;
gPlusR2 = g + R2;
f(s0, s1) = u0 , u1 , LP , HP , BP , BPNorm , Notch , AP , Peaking
with {
HP = (x - s0 * gPlusR2 - s1) / (1.0 + g * gPlusR2);
v0 = HP * g;
BP = s0 + v0;
v1 = BP * g;
LP = s1 + v1;
BPNorm = BP * R2;
Notch = x - BPNorm;
AP = x - BP * (R2 + R2);
Peaking = LP - HP;
u0 = v0 + BP;
u1 = v1 + LP;
};
};
LP2(CF, Q, x) = SVF(CF, Q, x) : ba.selectn(7, 0);
HP2(CF, Q, x) = SVF(CF, Q, x) : ba.selectn(7, 1);
BP2(CF, Q, x) = SVF(CF, Q, x) : ba.selectn(7, 2);
BP2Norm(CF, Q, x) = SVF(CF, Q, x) : ba.selectn(7, 3);
Notch2(CF, Q, x) = SVF(CF, Q, x) : ba.selectn(7, 4);
AP2(CF, Q, x) = SVF(CF, Q, x) : ba.selectn(7, 5);
Peaking2(CF, Q, x) = SVF(CF, Q, x) : ba.selectn(7, 6);
};
//----------`(fi.)dynamicSmoother`------------------------------------------------
//
// Adaptive smoother based on Andy Simper's paper.
//
// This filter uses both the lowpass and bandpass outputs of a
// state-variable filter. The lowpass is used to smooth out the input signal,
// the bandpass, which is a smoothed out version of the highpass, provides
// information on the rate of change of the input. Hence, the bandpass signal
// can be used to adjust the cutoff of the filter to quickly follow the input's
// fast and large variations while effectively filtering out local
// perturbations.
//
// This implementation does not use an approximation for the CF computation,
// and it deploys guards to prevent overshooting with extreme sensitivity
// values.
//
// #### Usage:
//
// ```
// _ : dynamicSmoother(sensitivity, baseCF) : _
// ```
//
// Where:
//
// * `sensitivity`: sensitivity to changes in the input signal.
// The range is, theoretically, from 0 to INF, though anything between
// 0.0 and 1.0 should be reasonable
// * `baseCF`: cutoff frequency, in Hz, when there is no variation in the
// input signal
//
// #### Reference
// <https://cytomic.com/files/dsp/DynamicSmoothing.pdf>
//
//------------------------------------------------------------------------------
declare dynamicSmoothing author "Dario Sanfilippo";
declare dynamicSmoothing copyright
"Copyright (C) 2024 Dario Sanfilippo <sanfilippo.dario@gmail.com>";
declare dynamicSmoothing license "MIT License";
dynamicSmoothing(sensitivity, baseCF, x) = f ~ _ : ! , _
with {
f(s) = SVFTPT.BP2(CF, .5 , x) , SVFTPT.LP2(CF, .5, x)
with {
CF = min(ma.SR * .125, baseCF + sensitivity * abs(s) * ma.SR * .5);
};
};
//-----------------`(fi.)oneEuro`----------------------------------
// The One Euro Filter (1€ Filter) is an adaptive lowpass filter.
// This kind of filter is commonly used in object-tracking,
// not necessarily audio processing.
//
// #### Usage
//
// ```
// _ : oneEuro(derivativeCutoff, beta, minCutoff) : _
// ```
//
// Where:
//
// * `derivativeCutoff`: Used to filter the first derivative of the input. 1 Hz is a good default.
// * `beta`: "Speed" parameter where higher values reduce latency.
// * `minCutoff`: Minimum cutoff frequency in Hz. Lower values remove more jitter.
//
// #### References
// * <https://gery.casiez.net/1euro/>
//------------------------------------------------------------------------
declare oneEuro author "David Braun";
declare oneEuro copyright "Copyright (C) 2024 by David Braun <braun@ccrma.stanford.edu>";
declare oneEuro license "MIT";
oneEuro(derivativeCutoff, beta, minCutoff) = _oneEuro ~ _
with {
// exponential moving average that calculates its own alpha from a cutoff in Hz
// _ : ema(cutoff) : _
ema(cutoff) = tick ~ _
with {
alpha = 1.0 / (1.0 + ma.SR / (2 * ma.PI * cutoff));
tick(prev, x) = prev*(1-alpha) + x*alpha;
};
_oneEuro(prev, x) = x : ema(adaptiveCutoff)
with {
derivative = (x - prev)*ma.SR;
derivativeFiltered = derivative : ema(derivativeCutoff);
adaptiveCutoff = minCutoff + beta * abs(derivativeFiltered);
};
};
//===========Linkwitz-Riley 4th-order 2-way, 3-way, and 4-way crossovers=====
//
// The Linkwitz-Riley (LR) crossovers are designed to produce a fully-flat
// magnitude response when their outputs are combined. The 4th-order
// LR filters (LR4) have a 24dB/octave slope and they are rather popular audio
// crossovers used in multi-band processing.
//
// The LR4 can be constructed by cascading two second-order Butterworth
// filters. For the second-order Butterworth filters, we will use the SVF
// filter implemented above by setting the Q-factor to 1.0 / sqrt(2.0).
// These will be cascaded in pairs to build the LR4 highpass and lowpass.
// For the phase correction, we will use the 2nd-order Butterworth allpass.
//
// #### Reference
// Zavalishin, Vadim. "The art of VA filter design." Native Instruments, Berlin, Germany (2012).
//=============================================================================
//----------`(fi.)lowpassLR4`---------------------------------------------------
// 4th-order Linkwitz-Riley lowpass.
//
// #### Usage
//
// ```
// _ : lowpassLR4(cf) : _
// ```
//
// Where:
//
// * `cf` is the lowpass cutoff in Hz
//------------------------------------------------------------------------------
declare lowpassLR4 author "Dario Sanfilippo";
declare lowpassLR4 copyright
"Copyright (C) 2022 Dario Sanfilippo <sanfilippo.dario@gmail.com>";
declare lowpassLR4 license "MIT-style STK-4.3 license";
lowpassLR4(cf, x) = x : seq(i, 2, svf.lp(cf, 1.0 / sqrt(2.0)));
//----------`(fi.)highpassLR4`--------------------------------------------------
// 4th-order Linkwitz-Riley highpass.
//
// #### Usage
//
// ```
// _ : highpassLR4(cf) : _
// ```
//
// Where:
//
// * `cf` is the highpass cutoff in Hz
//------------------------------------------------------------------------------
declare highpassLR4 author "Dario Sanfilippo";
declare highpassLR4 copyright
"Copyright (C) 2022 Dario Sanfilippo <sanfilippo.dario@gmail.com>";
declare highpassLR4 license "MIT-style STK-4.3 license";
highpassLR4(cf, x) = x : seq(i, 2, svf.hp(cf, 1.0 / sqrt(2.0)));
//----------`(fi.)crossover2LR4`------------------------------------------------
// Two-way 4th-order Linkwitz-Riley crossover.
//
// #### Usage
//
// ```
// _ : crossover2LR4(cf) : si.bus(2)
// ```
//
// Where:
//
// * `cf` is the crossover split cutoff in Hz
//------------------------------------------------------------------------------
declare crossover2LR4 author "Dario Sanfilippo";
declare crossover2LR4 copyright
"Copyright (C) 2022 Dario Sanfilippo <sanfilippo.dario@gmail.com>";
declare crossover2LR4 license "MIT-style STK-4.3 license";
crossover2LR4(cf, x) = lowpassLR4(cf, x) , highpassLR4(cf, x);
//----------`(fi.)crossover3LR4`------------------------------------------------
// Three-way 4th-order Linkwitz-Riley crossover.
//
// #### Usage
//
// ```
// _ : crossover3LR4(cf1, cf2) : si.bus(3)
// ```
//
// Where:
//
// * `cf1` is the crossover lower split cutoff in Hz
// * `cf2` is the crossover upper split cutoff in Hz
//------------------------------------------------------------------------------
declare crossover3LR4 author "Dario Sanfilippo";
declare crossover3LR4 copyright
"Copyright (C) 2022 Dario Sanfilippo <sanfilippo.dario@gmail.com>";
declare crossover3LR4 license "MIT-style STK-4.3 license";
crossover3LR4(cf1, cf2, x) =
crossover2LR4(cf1, x) : svf.ap(cf2, 1.0 / sqrt(2.0)) , crossover2LR4(cf2);
//----------`(fi.)crossover4LR4`------------------------------------------------
// Four-way 4th-order Linkwitz-Riley crossover.
//
// #### Usage
//
// ```
// _ : crossover4LR4(cf1, cf2, cf3) : si.bus(4)
// ```
//
// Where:
//
// * `cf1` is the crossover lower split cutoff in Hz
// * `cf2` is the crossover mid split cutoff in Hz
// * `cf3` is the crossover upper split cutoff in Hz
//------------------------------------------------------------------------------
declare crossover4LR4 author "Dario Sanfilippo";
declare crossover4LR4 copyright
"Copyright (C) 2022 Dario Sanfilippo <sanfilippo.dario@gmail.com>";
declare crossover4LR4 license "MIT-style STK-4.3 license";
crossover4LR4(cf1, cf2, cf3, x) =
crossover2LR4(cf2, x) :
svf.ap(cf3, 1.0 / sqrt(2.0)) ,
svf.ap(cf1, 1.0 / sqrt(2.0)) :
crossover2LR4(cf1) ,
crossover2LR4(cf3);
//----------`(fi.)crossover8LR4`------------------------------------------------
// Eight-way 4th-order Linkwitz-Riley crossover.
//
// #### Usage
//
// ```
// _ : crossover8LR4(cf1, cf2, cf3, cf4, cf5, cf6, cf7) : si.bus(8)
// ```
//
// Where:
//
// * `cf1-cf7` are the crossover cutoff frequencies in Hz
//------------------------------------------------------------------------------
declare crossover8LR4 author "Dario Sanfilippo";
declare crossover8LR4 copyright
"Copyright (C) 2022 Dario Sanfilippo <sanfilippo.dario@gmail.com>";
declare crossover8LR4 license "MIT-style STK-4.3 license";
crossover8LR4(cf1, cf2, cf3, cf4, cf5, cf6, cf7, x) =
crossover2LR4(cf4, x) :
(ap(cf6) : ap(cf5) : ap(cf7)) ,
(ap(cf2) : ap(cf1) : ap(cf3)) :
crossover2LR4(cf2) ,
crossover2LR4(cf6) :
ap(cf3) ,
ap(cf1) ,
ap(cf7) ,
ap(cf5) :
crossover2LR4(cf1) ,
crossover2LR4(cf3) ,
crossover2LR4(cf5) ,
crossover2LR4(cf7)
with {
ap(cf) = svf.ap(cf, 1.0 / sqrt(2.0));
};
//=========================== Standardized Filters ============================
//=============================================================================
//
// This section provides filters that are defined by national or
// international standards, e.g. for measurement applications.
//----------------------`(fi.)itu_r_bs_1770_4_kfilter`-------------------------
// The prefilter from Recommendation ITU-R BS.1770-4 for loudness
// measurement. Also known as "K-filter". The recommendation defines
// biquad filter coefficients for a fixed sample rate of 48kHz (page
// 4-5). Here, we construct biquads for arbitrary samplerates. The
// resulting filter is normalized, such that the magnitude at 997Hz is
// unity gain 1.0.
//
// Please note, the ITU-recommendation handles the normalization in
// equation (2) by subtracting 0.691dB, which is not needed with
// `itu_r_bs_1770_4_kfilter`.
//
// One option for future improvement might be, to round those filter
// coefficients, that are almost equal to one. Second, the maximum
// magnitude difference at 48kHz between the ITU-defined filter and
// `itu_r_bs_1770_4_kfilter` is 0.001dB, which obviously could be
// less.
//
// #### Usage
//
// ```
// _ : itu_r_bs_1770_4_kfilter : _
// ```
//
// #### Reference
// <https://www.itu.int/rec/R-REC-BS.1770>
// <https://gist.github.com/jkbd/07521a98f7873a2dc3dbe16417930791>
//-----------------------------------------------------------------------------
declare itu_r_bs_1770_4_kfilter author "Jakob Dübel";
declare itu_r_bs_1770_4_kfilter copyright "Copyright (C) 2022 Jakob Dübel";
declare itu_r_bs_1770_4_kfilter license "ISC license";
itu_r_bs_1770_4_kfilter = stage1 : stage2 : normalize997Hz
with {
freq2k(f_c) = tan((ma.PI * f_c)/ma.SR);
stage1 = tf22t(b0,b1,b2,a1,a2)
with {
f_c = 1681.7632251028442; // Hertz
gain = 3.9997778685513232; // Decibel
K = freq2k(f_c);
V_0 = pow(10, (gain/20.0));
denominator = 1.0 + sqrt(2.0)*K + K^2;
b0 = (V_0 + sqrt((2.0*V_0))*K + K^2) / denominator;
b1 = 2.0*(K^2 - V_0) / denominator;
b2 = (V_0 - sqrt(2.0*V_0)*K + K^2) / denominator;
a1 = 2*(K^2 - 1) / denominator;
a2 = (1 - sqrt(2.0)*K + K^2) / denominator;
};
stage2 = tf22t(b0,b1,b2,a1,a2)
with {
f_c = 38.135470876002174; // Hertz
Q = 0.5003270373223665;
K = freq2k(f_c);
denominator = (K^2) * Q + K + Q;
b0 = Q / denominator;
b1 = -2*Q / denominator;
b2 = b0;
a1 = (2*Q * (K^2 - 1)) / denominator;
a2 = ((K^2) * Q - K + Q) / denominator;
};
normalize997Hz = *(0.9273671710547968);
};
//============================Averaging Functions==============================
//=============================================================================
//
// These are a set of samplerate independent averaging functions based on
// moving-average and one-pole filters with specific response characteristics.
//----------------------------`(fi.)avg_rect`----------------------------------
// Moving average.
//
// #### Usage
//
// ```
// _ : avg_rect(period) : _
// ```
//
// Where:
//
// * `period` is the averaging frame in seconds
//-----------------------------------------------------------------------------
declare avg_rect author "Dario Sanfilippo and Julius O. Smith III";
declare avg_rect copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com> and
2003-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare avg_rect license "MIT-style STK-4.3 license";
avg_rect(period, x) = x : ba.slidingMean(rint(period * ma.SR));
//----------------------------`(fi.)avg_tau`-------------------------------------
// Averaging function based on a one-pole filter and the tau response time.
// Tau represents the effective length of the one-pole impulse response,
// that is, tau is the integral of the filter's impulse response. This
// response is slower to reach the final value but has less ripples in
// non-steady signals.
//
// #### Usage
//
// ```
// _ : avg_tau(period) : _
// ```
//
// Where:
//
// * `period` is the time, in seconds, for the system to decay by 1/e,
// or to reach 1-1/e of its final value.
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/mdft/Exponentials.html>
//-----------------------------------------------------------------------------
declare avg_tau author "Dario Sanfilippo and Julius O. Smith III";
declare avg_tau copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com> and
2003-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare avg_tau license "MIT-style STK-4.3 license";
avg_tau(period, x) = fi.lptau(period, x);
//----------------------------`(fi.)avg_t60`-------------------------------------
// Averaging function based on a one-pole filter and the t60 response time.
// This response is particularly useful when the system is required to
// reach the final value after about `period` seconds.
//
// #### Usage
//
// ```
// _ : avg_t60(period) : _
// ```
//
// Where:
//
// * `period` is the time, in seconds, for the system to decay by 1/1000,
// or to reach 1-1/1000 of its final value.
//
// #### Reference
// <https://ccrma.stanford.edu/~jos/mdft/Audio_Decay_Time_T60.html>
//-----------------------------------------------------------------------------
declare avg_t60 author "Dario Sanfilippo and Julius O. Smith III";
declare avg_t60 copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com> and
2003-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare avg_t60 license "MIT-style STK-4.3 license";
avg_t60(period, x) = fi.lpt60(period, x);
//----------------------------`(fi.)avg_t19`-------------------------------------
// Averaging function based on a one-pole filter and the t19 response time.
// This response is close to the moving-average algorithm as it roughly reaches
// the final value after `period` seconds and shows about the same
// oscillations for non-steady signals.
//
// #### Usage
//
// ```
// _ : avg_t19(period) : _
// ```
//
// Where:
//
// * `period` is the time, in seconds, for the system to decay by 1/e^2.2,
// or to reach 1-1/e^2.2 of its final value.
//
// #### Reference
// Zölzer, U. (2008). Digital audio signal processing (Vol. 9). New York: Wiley.
//-----------------------------------------------------------------------------
declare avg_t19 author "Dario Sanfilippo and Julius O. Smith III";
declare avg_t19 copyright "Copyright (C) 2020 Dario Sanfilippo
<sanfilippo.dario@gmail.com> and
2003-2020 by Julius O. Smith III <jos@ccrma.stanford.edu>";
declare avg_t19 license "MIT-style STK-4.3 license";
avg_t19(period, x) = fi.lpt19(period, x);
//============================Kalman Filters===================================
//=============================================================================
//
// Functions related to the Kalman filter.
kalmanEnv = environment {
matMul = la.matMul;
// Predicts the next state.
// * `N`: State size
// * `M`: Measurement size
// * `F`: State transition matrix (NxN)
// * `B`: Control input matrix (NxM)
// Implicit arguments:
// * `x`: Current state (Nx1)
// * `u`: Control input (Mx1)
predictState(N, M, F, B) = si.vecOp((Fx, Bu), +)
with {
// Fx = F @ x, where F is NxN and x is Nx1
Fx = matMul(N, N, N, 1, F, si.bus(N));
// Bu = B @ u, where B is NxM and u is Mx1
Bu = matMul(N, M, M, 1, B, si.bus(M));
};
// Predicts the covariance matrix for the next state.
// * `N`: State size
// * `F`: State transition matrix (NxN)
// * `Q`: Process noise covariance matrix (NxN)
// * `P`: Current state covariance matrix (NxN)
// No implict arguments.
predictCovariance(N, F, Q, P) = si.vecOp((FPF_T, Q), +)
with {
// FP = F @ P
FP = matMul(N, N, N, N, F, P);
// FPF_T = FP @ F^T, where FP is NxN and F^T is NxN
FPF_T = matMul(N, N, N, N, FP, la.transpose2(N, N, F));
};
// Calculates the Kalman gain (NxM).
// * `N`: State size
// * `M`: Measurement size
// * `H`: Observation matrix (MxN)
// * `R`: Measurement noise covariance matrix (MxM)
// Implict arguments:
// * `P_pred`: Predicted covariance matrix (NxN)
kalmanGain(N, M, H, R) = P_pred <:
matMul(N, M, M, M, matMul(N, N, N, M, P_pred, H_T), S_inv)
with {
P_pred = si.bus(N*N);
// H_T = Transpose of H
H_T = la.transpose2(M, N, H);
// HP = H * P_pred, where H is MxN and P_pred is NxN
HP = matMul(M, N, N, N, H, P_pred);
// HPH_T = HP @ H^T, where HP is MxN and H^T is NxM, resulting in MxM
HPH_T = matMul(M, N, N, M, HP, H_T);
// S_inv = inverse(HPH_T + R)
S_inv = si.vecOp((HPH_T, R), +) : la.inverse(M);
};
// Updates the state estimate based on the Kalman gain and measurement.
// * `N`: State size
// * `M`: Measurement size
// * `H`: Observation matrix (MxN)
// Implicit arguments:
// * `K`: Kalman gain matrix (NxM)
// * `x_pred`: (Nx1)
// * `z`: (Mx1)
updateState(N, M, H) = si.bus(N*M), si.bus(N), si.bus(M) <:
si.vecOp((get_x_pred, K_mul_residual(N, M, H)), +)
with {
get_x_pred = par(i, N*M, !), par(i, N, _), par(i, M, !);
};
// todo: find a way to not use mySwap.
// Its purpose is to route K, x, z into K, z, x
mySwap(N, M) = si.bus(N*M), si.bus(N), si.bus(M) <:
select_K, select_z, select_x_pred
with {
select_K = par(i, N*M, _), par(i, N, !), par(i, M, !);
select_x_pred = par(i, N*M, !), par(i, N, _), par(i, M, !);
select_z = par(i, N*M, !), par(i, N, !), par(i, M, _);
};
K_mul_residual(N, M, H) = mySwap(N, M) : matMul(N, M, M, 1, si.bus(N*M), residual)
with {
// residual = z - H @ x_pred, where z is Mx1 and H @ x_pred is Mx1
residual = si.vecOp((si.bus(M), matMul(M, N, N, 1, H, si.bus(N))), -);
};
// Updates the covariance matrix based on the Kalman gain and observation matrix.
// * `N`: State size
// * `M`: Measurement size
// * `H`: Observation matrix (MxN)
// * `K`: Kalman gain matrix (NxM)
// * `P_pred`: Predicted covariance matrix (NxN)
// No implict arguments.
updateCovariance(N, M, H, K, P_pred) =
matMul(N, N, N, N, I_minus_KH, P_pred)
with {
// KH = K @ H, where K is NxM and H is MxN
KH = matMul(N, M, M, N, K, H);
// I_minus_KH = I - K @ H, where both are NxN
I_minus_KH = si.vecOp((la.identity(N), KH), -);
};
// implict arguments:
// * `u`: Control input (Mx1)
// * `z`: Measurement signal (Mx1)
kalmanFilter(N, M, B, R, H, Q, F, reset) = (p, x, u, z <: pNew, xNew) ~ (pBus, xBus) : pCut, xBus
with {
doReset = reset > 0;
pBus = si.bus(N*N);
pCut = par(i, N*N, !);
pInit = la.diag(N, par(i, N, 100)); // large value for initial uncertainty in P.
p = pBus, pInit : ba.selectbus(N*N, 2, doReset);
xBus = si.bus(N);
xCut = par(i, N, !);
xInit = par(i, N, 0); // initialize with zeros.
x = xBus, xInit : ba.selectbus(N, 2, doReset);
u = si.bus(M);
z = si.bus(M);
uCut = par(i, M, !);
zCut = par(i, M, !);
predCov = predictCovariance(N, F, Q, pBus);
gain = kalmanGain(N, M, H, R);
xNew = pBus, xBus, u, z : updateState(N, M, H, gain(predCov), predictState(N, M, F, B, xBus, u), z);
pNew = pBus, xCut, uCut, zCut : predCov <: updateCovariance(N, M, H, gain(pBus), pBus);
};
};
//-----------`(fi.)kalman`----------------------------------------------------
// The Kalman filter. It returns the state (a bus of size `N`).
// Note that the only compile-time constant arguments are `N` and `M`.
// Other arguments are capitalized because they're matrices, and it makes
// reading them much easier.
//
// #### Usage
// ```
// kalman(N, M, B, R, H, Q, F, reset, u, z) : si.bus(N)
// ```
//
// Where:
//
// * `N`: State size (constant int)
// * `M`: Measurement size (constant int)
// * `B`: Control input matrix (NxM)
// * `R`: Measurement noise covariance matrix (MxM)
// * `H`: Observation matrix (MxN)
// * `Q`: Process noise covariance matrix (NxN)
// * `F`: State transition matrix (NxN)
// * `reset`: Reset trigger. Whenever `reset>0`, the internal state `x` and covariance matrix `P` are reset.
// * `u`: Control input (Mx1)
// * `z`: Measurement signal (Mx1)
//
// #### Example test programs
// Demo 1 `(N=1, M=1)` (don't listen, just use oscilloscope):
//
// ```
// process = fi.kalman(N, M, B, R, H, Q, F, reset, u, z) : it.interpolate_linear(filteredAmt, z)
// with {
// B = 1.;
// R = 0.1;
// H = 1;
// Q = .01;
// F = la.identity(N);
// reset = button("reset");
//
// // Dimensions
// N = 1; // State size
// M = 1; // Measurement size
//
// freq = hslider("Freq", 1, 0.01, 10, .01);
// u = 0.; // constant input
// trueState = os.osc(freq)*.5 + u;
// noiseGain = hslider("Noise Gain", .1, 0, 1, .01);
//
// filteredAmt = hslider("Filter Amount", 1, 0, 1, .01) : si.smoo;
//
// measurementNoise = no.noise*noiseGain;
// z = trueState + measurementNoise; // Observed state
// };
// ```
//
// Demo 2 `(N=2, M=1)` (don't listen, just use oscilloscope)
//
// ```
// process = fi.kalman(N, M, B, R, H, Q, F, reset, u, z)
// with {
// B = par(i, N, 0);
// R = (0.1);
// H = (1, 0);
// Q = la.diag(2, par(i, N, .1));
// F = la.identity(N);
// reset = 0;
// u = si.bus(M);
// z = si.bus(M);
//
// // Dimensions
// N = 2; // State size
// M = 1; // Measurement size
// };
// ```
// #### References
// * <https://en.wikipedia.org/wiki/Kalman_filter>
// * <https://www.cs.unc.edu/~welch/kalman/index.html>
//----------------------------------------------------------------------------
declare kalman author "David Braun";
declare kalman license "MIT License";
kalman = kalmanEnv.kalmanFilter;
/*******************************************************************************
# Licenses
## STK 4.3 License
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
Any person wishing to distribute modifications to the Software is asked to send
the modifications to the original developer so that they can be incorporated
into the canonical version. For software copyrighted by Julius O. Smith III,
email your modifications to <jos@ccrma.stanford.edu>. This is, however, not a
binding provision of this license.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.
--------------------------------------------------------------------------------
## LGPL License
This program is free software; you can redistribute it and/or modify it under
the terms of the GNU Lesser General Public License as published by the Free
Software Foundation; either version 2.1 of the License, or (at your option) any
later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A
PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public License along
with the GNU C Library; if not, write to the Free Software Foundation, Inc.,
59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
--------------------------------------------------------------------------------
## ISC License
Permission to use, copy, modify, and/or distribute this software for any
purpose with or without fee is hereby granted, provided that the above
copyright notice and this permission notice appear in all copies.
THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES WITH
REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY SPECIAL, DIRECT,
INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES WHATSOEVER RESULTING FROM
LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR
OTHER TORTIOUS ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR
PERFORMANCE OF THIS SOFTWARE.
*******************************************************************************/
|