1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752
|
//#################################### interpolators.lib ########################################
// A library to handle interpolation. Its official prefix is `it`.
//
// This library provides several basic interpolation functions, as well as interpolators
// taking a `gen` circuit of N outputs producing values to be interpolated, triggered
// by a `idv` read index signal. Two points and four points interpolations are implemented.
//
// The `idv` parameter is to be used as a read index. In `-single` (= singleprecision) mode,
// a technique based on 2 signals with the pure integer index and a fractional part in the [0,1]
// range is used to avoid accumulating errors. In `-double` (= doubleprecision) or `-quad` (= quadprecision) modes,
// a standard implementation with a single fractional index signal is used. Three functions `int_part`, `frac_part` and `mak_idv` are available to manipulate the read index signal.
//
// Here is a use-case with `waveform`. Here the signal given to `interpolator_XXX` uses the `idv` model.
//
// ```
// waveform_interpolator(wf, step, interp) = interp(gen, idv)
// with {
// gen(idx) = wf, (idx:max(0):min(size-1)) : rdtable with { size = wf:(_,!); }; /* waveform size */
// index = (+(step)~_)-step; /* starting from 0 */
// idv = it.make_idv(index); /* build the signal for interpolation in a generic way */
// };
//
// waveform_linear(wf, step) = waveform_interpolator(wf, step, it.interpolator_linear);
// waveform_cosine(wf, step) = waveform_interpolator(wf, step, it.interpolator_cosine);
// waveform_cubic(wf, step) = waveform_interpolator(wf, step, it.interpolator_cubic);
//
// waveform_interp(wf, step, selector) = waveform_interpolator(wf, step, interp_select(selector))
// with {
// /* adapts the argument order */
// interp_select(sel, gen, idv) = it.interpolator_select(gen, idv, sel);
// };
//
// waveform and index
// waveform_interpolator1(wf, idv, interp) = interp(gen, idv)
// with {
// gen(idx) = wf, (idx:max(0):min(size-1)) : rdtable with { size = wf:(_,!); }; /* waveform size */
// };
//
// waveform_linear1(wf, idv) = waveform_interpolator1(wf, idv, it.interpolator_linear);
// waveform_cosine1(wf, idv) = waveform_interpolator1(wf, idv, it.interpolator_cosine);
// waveform_cubic1(wf, idv) = waveform_interpolator1(wf, idv, it.interpolator_cubic);
//
// waveform_interp1(wf, idv, selector) = waveform_interpolator1(wf, idv, interp_select(selector))
// with {
// /* adapts the argument order */
// interp_select(sel, gen, idv) = it.interpolator_select(gen, idv, sel);
// };
// ```
//
// Some tests here:
//
// ```
// wf = waveform {0.0, 10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 50.0, 40.0, 30.0, 20.0, 10.0, 0.0};
//
// process = waveform_linear(wf, step), waveform_cosine(wf, step), waveform_cubic(wf, step) with { step = 0.25; };
//
// process = waveform_interp(wf, 0.25, nentry("algo", 0, 0, 3, 1));
//
// process = waveform_interp1(wf, idv, nentry("algo", 0, 0, 3, 1))
// with {
// step = 0.1;
// idv_aux = (+(step)~_)-step; /* starting from 0 */
// idv = it.make_idv(idv_aux); /* build the signal for interpolation in a generic way */
// };
//
// /* Test linear interpolation between 2 samples with a `(idx,dv)` signal built using a waveform */
// linear_test = (idx,dv), it.interpolator_linear(gen, (idx,dv))
// with {
// /* signal to interpolate (only 2 points here) */
// gen(id) = waveform {3.0, -1.0}, (id:max(0)) : rdtable;
// dv = waveform {0.0, 0.25, 0.50, 0.75, 1.0}, index : rdtable;
// idx = 0;
// /* test index signal */
// index = (+(1)~_)-1; /* starting from 0 */
// };
//
// /* Test cosine interpolation between 2 samples with a `(idx,dv)` signal built using a waveform */
// cosine_test = (idx,dv), it.interpolator_cosine(gen, (idx,dv))
// with {
// /* signal to interpolate (only 2 points here) */
// gen(id) = waveform {3.0, -1.0}, (id:max(0)) : rdtable;
// dv = waveform {0.0, 0.25, 0.50, 0.75, 1.0}, index : rdtable;
// idx = 0;
// /* test index signal */
// index = (+(1)~_)-1; /* starting from 0 */
// };
//
// /* Test cubic interpolation between 4 samples with a `(idx,dv)` signal built using a waveform */
// cubic_test = (idx,dv), it.interpolator_cubic(gen, (idx,dv))
// with {
// /* signal to interpolate (only 4 points here) */
// gen(id) = waveform {-1.0, 2.0, 1.0, 4.0}, (id:max(0)) : rdtable;
// dv = waveform {0.0, 0.25, 0.50, 0.75, 1.0}, index : rdtable;
// idx = 0;
// /* test index signal */
// index = (+(1)~_)-1; /* starting from 0 */
// };
// ```
//
// #### References
//
// <https://github.com/grame-cncm/faustlibraries/blob/master/interpolators.lib>
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2019-2020 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ba = library("basics.lib");
ro = library("routes.lib");
ma = library("maths.lib");
si = library("signals.lib");
declare name "Faust Interpolator Library";
declare version "1.4.0";
// Produces 0 until the first trig, then 1 until the next trig (which outputs a 0 sample to reset), and so on
reset(trig) = hold * (trig <= trig')
with {
hold = select2(trig,_,trig) ~ _;
};
// The following 3 functions allow to adapt a 'single signal' fractional idv in this [idx, dv] model.
singleprecision int_part(idv) = idv : _,!;
singleprecision frac_part(idv) = idv : !,_;
singleprecision make_idv(id) = int(id), ma.frac(id);
// Infinite raising index
singleprecision raise(trig, step, length) = id, dv
letrec {
'id = (id + int(step) + int(dv + ma.frac(step))) * reset(trig);
'dv = ma.frac(dv + ma.frac(step)) * reset(trig);
};
// Modulo based raising index
singleprecision raise_modulo(trig, step, length) = id, dv
letrec {
'id = fmod(id + int(step) + int(dv + ma.frac(step)), length) * reset(trig);
'dv = ma.frac(dv + ma.frac(step)) * reset(trig);
};
// Decreasing index starting at 'length'
singleprecision decrease(trig, step, length) = raise(trig, -step, length) : (+(length), _);
// Modulo decreasing index starting at 'length'
singleprecision decrease_modulo(trig, step, length) = raise_modulo(trig, -step, length) : (+(length), _);
// The following 3 functions allow to adapt a 'single signal' fractional idv in this [idx, dv] model.
doubleprecision quadprecision int_part(idv) = int(idv);
doubleprecision quadprecision frac_part(idv) = ma.frac(idv);
doubleprecision quadprecision make_idv(id) = id;
// Infinite raising index
doubleprecision quadprecision raise(trig, step, length) = idv
letrec {
'idv = (idv + step) * reset(trig);
};
// Modulo based raising index
doubleprecision quadprecision raise_modulo(trig, step, length) = idv
letrec {
'idv = fmod(idv + step, length) * reset(trig);
};
// Decreasing index starting at 'length'
doubleprecision quadprecision decrease(trig, step, length) = raise(trig, -step, length) + length;
// Modulo decreasing index starting at 'length'
doubleprecision quadprecision decrease_modulo(trig, step, length) = raise_modulo(trig, -step, length) + length;
//=========================Two points interpolation functions=============================
//========================================================================================
//-------`(it.)interpolate_linear`----------
// Linear interpolation between 2 values.
//
// #### Usage
//
// ```
// interpolate_linear(dv,v0,v1) : _
// ```
//
// Where:
//
// * `dv`: in the fractional value in [0..1] range
// * `v0`: is the first value
// * `v1`: is the second value
//
//
// #### Reference:
//
// <https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h>
//
//--------------------------------------------
declare interpolate_linear author "Stéphane Letz";
declare interpolate_linear licence "MIT";
interpolate_linear(dv,v0,v1) = v0 + dv*(v1-v0); // (faster than v0*(1-dv)+v1*dv which is currently not optimized...)
//-------`(it.)interpolate_cosine`----------
// Cosine interpolation between 2 values.
//
// #### Usage
//
// ```
// interpolate_cosine(dv,v0,v1) : _
// ```
//
// Where:
//
// * `dv`: in the fractional value in [0..1] range
// * `v0`: is the first value
// * `v1`: is the second value
//
//
// #### Reference:
//
// <https://github.com/jamoma/JamomaCore/blob/master/Foundation/library/includes/TTInterpolate.h>
//
//--------------------------------------------
declare interpolate_cosine author "Stéphane Letz";
declare interpolate_cosine licence "MIT";
interpolate_cosine(dv,v0,v1) = v0 + a2*(v1-v0) with { a2 = 0.5 * (1.0 - cos(dv*ma.PI)); };
//=========================Four points interpolation functions============================
//========================================================================================
//-------`(it.)interpolate_cubic`----------
// Cubic interpolation between 4 values.
//
// #### Usage
//
// ```
// interpolate_cubic(dv,v0,v1,v2,v3) : _
// ```
//
// Where:
//
// * `dv`: in the fractional value in [0..1] range
// * `v0`: is the first value
// * `v1`: is the second value
// * `v2`: is the third value
// * `v3`: is the fourth value
//
//
// #### Reference:
//
// <https://www.paulinternet.nl/?page=bicubic>
//
//--------------------------------------------
declare interpolate_cubic author "Stéphane Letz";
declare interpolate_cubic licence "MIT";
interpolate_cubic(dv,v0,v1,v2,v3)
= v1 + 0.5*dv*(v2 - v0 + dv*(2.0*v0 - 5.0*v1 + 4.0*v2 - v3 + dv*(3.0*(v1 - v2) + v3 - v0)));
//=========================Two points interpolators=======================================
//========================================================================================
//-------`(it.)interpolator_two_points`----------
// Generic interpolator on two points (current and next index), assuming an increasing index.
//
// #### Usage
//
// ```
// interpolator_two_points(gen, idv, interpolate_two_points) : si.bus(outputs(gen))
// ```
//
// Where:
//
// * `gen`: a circuit with an 'idv' reader input that produces N outputs
// * `idv`: a fractional read index expressed as a float value, or a (int,frac) pair
// * `interpolate_two_points`: a two points interpolation function
//
//--------------------------------------------
declare interpolator_two_points author "Stéphane Letz";
declare interpolator_two_points licence "MIT";
interpolator_two_points(gen, idv, interpolate_two_points) = (gen(id0), gen(id1))
: ro.interleave(outputs(gen), 2)
: par(i, outputs(gen), interpolate_two_points(dv))
with {
id0 = int_part(idv); // index integer part
id1 = id0 + 1; // next index
dv = frac_part(idv); // index fractional part in [0..1]
};
//-------`(it.)interpolator_linear`----------
// Linear interpolator for a 'gen' circuit triggered by an 'idv' input to generate values.
//
// #### Usage
//
// ```
// interpolator_linear(gen, idv) : si.bus(outputs(gen))
// ```
//
// Where:
//
// * `gen`: a circuit with an 'idv' reader input that produces N outputs
// * `idv`: a fractional read index expressed as a float value, or a (int,frac) pair
//
//--------------------------------------------
declare interpolator_linear author "Stéphane Letz";
declare interpolator_linear licence "MIT";
interpolator_linear(gen, idv) = interpolator_two_points(gen, idv, interpolate_linear);
//-------`(it.)interpolator_cosine`----------
// Cosine interpolator for a 'gen' circuit triggered by an 'idv' input to generate values.
//
// #### Usage
//
// ```
// interpolator_cosine(gen, idv) : si.bus(outputs(gen))
// ```
//
// Where:
//
// * `gen`: a circuit with an 'idv' reader input that produces N outputs
// * `idv`: a fractional read index expressed as a float value, or a (int,frac) pair
//
//--------------------------------------------
declare interpolator_cosine author "Stéphane Letz";
declare interpolator_cosine licence "MIT";
interpolator_cosine(gen, idv) = interpolator_two_points(gen, idv, interpolate_cosine);
// To be used in 'interpolator_select'
interpolator_null(gen, idv) = interpolator_two_points(gen, idv, \(dv,v0,v1).(v0));
//=========================Four points interpolators======================================
//========================================================================================
//-------`(it.)interpolator_four_points`----------
// Generic interpolator on interpolator_four_points points (previous, current and two next indexes), assuming an increasing index.
//
// #### Usage
//
// ```
// interpolator_four_points(gen, idv, interpolate_four_points) : si.bus(outputs(gen))
// ```
//
// Where:
//
// * `gen`: a circuit with an 'idv' reader input that produces N outputs
// * `idv`: a fractional read index expressed as a float value, or a (int,frac) pair
// * `interpolate_four_points`: a four points interpolation function
//
//--------------------------------------------
declare interpolator_four_points author "Stéphane Letz";
declare interpolator_four_points licence "MIT";
interpolator_four_points(gen, idv, interpolate_four_points) = (gen(id0), gen(id1), gen(id2), gen(id3))
: ro.interleave(outputs(gen), 4)
: par(i, outputs(gen), interpolate_four_points(dv))
with {
id0 = id1 - 1; // previous index
id1 = int_part(idv); // index integer part
id2 = id1 + 1; // next index
id3 = id2 + 1; // next index
dv = frac_part(idv); // index fractional part in [0..1]
};
//-------`(it.)interpolator_cubic`----------
// Cubic interpolator for a 'gen' circuit triggered by an 'idv' input to generate values.
//
// #### Usage
//
// ```
// interpolator_cubic(gen, idv) : si.bus(outputs(gen))
// ```
//
// Where:
//
// * `gen`: a circuit with an 'idv' reader input that produces N outputs
// * `idv`: a fractional read index expressed as a float value, or a (int,frac) pair
//
//--------------------------------------------
declare interpolator_cubic author "Stéphane Letz";
declare interpolator_cubic licence "MIT";
interpolator_cubic(gen, idv) = interpolator_four_points(gen, idv, interpolate_cubic);
// Enum of interpolation algorithms
MAX_INTER = 4;
linear = 0;
cosine = 1;
cubic = 2;
nointerp = MAX_INTER-1;
//-------`(it.)interpolator_select`----------
// Generic configurable interpolator (with selector between in [0..3]). The value 3 is used for no interpolation.
//
// #### Usage
//
// ```
// interpolator_select(gen, idv, sel) : _,_... (equal to N = outputs(gen))
// ```
//
// Where:
//
// * `gen`: a circuit with an 'idv' reader input that produces N outputs
// * `idv`: a fractional read index expressed as a float value, or a (int,frac) pair
// * `sel`: an interpolation algorithm selector in [0..3] (0 = linear, 1 = cosine, 2 = cubic, 3 = nointerp)
//
//--------------------------------------------
declare interpolator_select author "Stéphane Letz";
declare interpolator_select licence "MIT";
interpolator_select(gen, idv, sel) = ba.selectmulti(ma.SR/10, interpolators, sel)
with {
interpolators = (interpolator_linear(gen, idv),
interpolator_cosine(gen, idv),
interpolator_cubic(gen, idv),
interpolator_null(gen, idv));
};
//======= Generic piecewise linear interpolation ===============================
//==============================================================================
//
//-------`(it.)lerp`------------------------------------------------------------
// Linear interpolation between two points.
//
// #### Usage
//
// ```
// lerp(x0, x1, y0, y1, x) : si.bus(1);
// ```
//
// Where:
//
// * `x0`: x-coordinate origin
// * `x1`: x-coordinate destination
// * `y0`: y-coordinate origin
// * `y1`: y-coordinate destination
// * `x`: x-coordinate input
//------------------------------------------------------------------------------
declare lerp author "Dario Sanfilippo";
declare lerp licence "MIT";
lerp(x0, x1, y0, y1, x) = y
with {
xRange = x1 - x0;
yRange = y1 - y0;
nonZeroDomain(x) = ba.if(x >= 0, max(ma.EPSILON, x), min(0 - ma.EPSILON, x));
c = (x - x0) / nonZeroDomain(xRange);
y = c * yRange + y0;
};
//------------------------------------------------------------------------------
//-------`(it.)piecewise`-------------------------------------------------------
// Linear piecewise interpolation between N points.
//
// #### Usage
//
// ```
// piecewise(xList, yList, x) : si.bus(1);
// ```
//
// Where:
//
// * `xList`: x-coordinates list
// * `yList`: y-coordinates list
// * `x`: x-coordinate input
//
// #### Example test program
// The code below will output the values of linear segments going through the
// y coordinates as the input goes from -5 to 5:
//
// ```
// x = hslider("x", -5, -5.0, 5.0, .001);
// process = it.piecewise((-5, -3, 0, 3, 5), (2, 0, 3, -3, -2), x);
// ```
//
//------------------------------------------------------------------------------
declare piecewise author "Dario Sanfilippo";
declare piecewise licence "MIT";
piecewise(xList, yList, x) = y , assert
with {
N = outputs(xList);
M = outputs(yList);
assert = par(i, N, 0) : si.block(M);
xPoint(i) = ba.selectn(N, i, xList);
yPoint(i) = ba.selectn(M, i, yList);
pieceSel = par(i, N - 2, (xPoint(i) <= x) & (x < xPoint(i + 1))) , x >= xPoint(N - 2) : par(i, N - 1, *(i)) :> _;
y = lerp(xPoint(pieceSel), xPoint(pieceSel + 1), yPoint(pieceSel), yPoint(pieceSel + 1), x);
};
//=========================Lagrange based interpolators====================================
//========================================================================================
//-------`(it.)lagrangeCoeffs`---------------------------------------------
//
// This is a function to generate N + 1 coefficients for an Nth-order Lagrange
// basis polynomial with arbitrary spacing of the points.
//
// #### Usage
//
// ```
// lagrangeCoeffs(N, xCoordsList, x) : si.bus(N + 1)
// ```
//
// Where:
//
// * `N`: order of the interpolation filter, known at compile-time
// * `xCoordsList`: a list of N + 1 elements determining the x-axis coordinates of N + 1 values, known at compile-time
// * `x`: a fractional position on the x-axis to obtain the interpolated y-value
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html>
// <https://en.wikipedia.org/wiki/Lagrange_polynomial>
//------------------------------------------------------------
declare lagrangeCoeffs author "Dario Sanfilippo";
declare lagrangeCoeffs copyright "Copyright (C) 2021 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare lagrangeCoeffs license "MIT license";
lagrangeCoeffs(N, xCoords, x) = par(n, N + 1, prod(k, N + 1, f(n, k)))
with {
xVals(i) = ba.take(i + 1, xCoords);
f(n, k) = ((x - xVals(k)) * (n != k) + (n == k)) /
((xVals(n) - xVals(k)) + (n == k));
};
// The following definition for uniformely-spaced points interpolation is kept for back-compatibility
lagrange_h(N, x) = lagrangeCoeffs(N, xCoord, x)
with {
xCoord = par(i, N + 1, i);
};
//-------`(it.)lagrangeInterpolation`--------------------------------------
//
// Nth-order Lagrange interpolator to interpolate between a set of arbitrarily spaced N + 1 points.
//
// #### Usage
//
// ```
// x , yCoords : lagrangeInterpolation(N, xCoordsList) : _
// ```
//
// Where:
//
// * `N`: order of the interpolator, known at compile-time
// * `xCoordsList`: a list of N + 1 elements determining the x-axis spacing of the points, known at compile-time
// * `x`: an x-axis position to interpolate between the y-values
// * `yCoords`: N + 1 elements determining the values of the interpolation points
//
// Example: find the centre position of a four-point set using an order-3
// Lagrange function fitting the equally-spaced points [2, 5, -1, 3]:
//
// ```
// N = 3;
// xCoordsList = (0, 1, 2, 3);
// x = N / 2.0;
// yCoords = 2, 5, -1, 3;
// process = x, yCoords : it.lagrangeInterpolation(N, xCoordsList);
// ```
//
// which outputs ~1.938.
//
// Example: output the dashed curve showed on the Wikipedia page (top figure in <https://en.wikipedia.org/wiki/Lagrange_polynomial>):
//
// ```
// N = 3;
// xCoordsList = (-9, -4, -1, 7);
// x = os.phasor(16, 1) - 9;
// yCoords = 5, 2, -2, 9;
// process = x, yCoords : it.lagrangeInterpolation(N, xCoordsList);
// ```
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Lagrange_Interpolation.html>
// Sanfilippo and Parker 2021, "Combining zeroth and first‐order analysis with Lagrange polynomials to reduce artefacts in live concatenative granular processing." Proceedings of the DAFx conference 2021, Vienna, Austria.
// <https://dafx2020.mdw.ac.at/proceedings/papers/DAFx20in21_paper_38.pdf>
//------------------------------------------------------------
declare lagrangeInterpolation author "Dario Sanfilippo";
declare lagrangeInterpolation copyright "Copyright (C) 2021 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare lagrangeInterpolation license "MIT license";
lagrangeInterpolation(N, xCoords, x) = si.dot(N + 1, lagrangeCoeffs(N, xCoords, x));
// The following definition for uniformely-spaced points interpolation is kept for back-compatibility
lagrangeN(N, x) = si.dot(N + 1, lagrange_h(N, x));
//-------`(it.)frdtable`--------------------------------------------
//
// Look-up circular table with Nth-order Lagrange interpolation for fractional
// indexes. The index is wrapped-around and the table is cycles for an index
// span of size S, which is the table size in samples.
//
// #### Usage
//
// ```
// frdtable(N, S, init, idx) : _
// ```
//
// Where:
//
// * `N`: Lagrange interpolation order, known at compile-time
// * `S`: table size in samples, known at compile-time
// * `init`: the initial table content, known at compile-time
// * `idx`: fractional index wrapped-around 0 and S
//
// #### Example test program
// Test the effectiveness of the 5th-order interpolation scheme by
// creating a table look-up oscillator using only 16 points of a sinewave;
// compare the result with a non-interpolated version:
//
// ```
// N = 5;
// S = 16;
// index = os.phasor(S, 1000);
// process = rdtable(S, os.sinwaveform(S), int(index)) ,
// it.frdtable(N, S, os.sinwaveform(S), index);
// ```
//------------------------------------------------------------
declare frdtable author "Dario Sanfilippo";
declare frdtable copyright "Copyright (C) 2021 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare frdtable license "LGPL v3.0 license";
frdtable(N, S, init, idx) =
lagrangeN(N, f_idx, par(i, N + 1, table(i_idx - int(N / 2) + i)))
with {
table(j) = rdtable(S, init, int(ma.modulo(j, S)));
f_idx = ma.frac(idx) + int(N / 2);
i_idx = int(idx);
};
//-------`(it.)frwtable`--------------------------------------------
//
// Look-up updatable circular table with Nth-order Lagrange interpolation for
// fractional indexes. The index is wrapped-around and the table is circular
// indexes ranging from 0 to S, which is the table size in samples.
//
// #### Usage
//
// ```
// frwtable(N, S, init, w_idx, x, r_idx) : _
// ```
//
// Where:
//
// * `N`: Lagrange interpolation order, known at compile-time
// * `S`: table size in samples, known at compile-time
// * `init`: the initial table content, known at compile-time
// * `w_idx`: it should be an INT between 0 and S - 1
// * `x`: input signal written on the w_idx positions
// * `r_idx`: fractional index wrapped-around 0 and S
//
// #### Example test program
// Test the effectiveness of the 5th-order interpolation scheme by
// creating a table look-up oscillator using only 16 points of a sinewave;
// compare the result with a non-interpolated version:
//
// ```
// N = 5;
// S = 16;
// rIdx = os.phasor(S, 300);
// wIdx = ba.period(S);
// process = rwtable(S, os.sinwaveform(S), wIdx, os.sinwaveform(S), int(rIdx)) ,
// it.frwtable(N, S, os.sinwaveform(S), wIdx, os.sinwaveform(S), rIdx);
// ```
//------------------------------------------------------------
declare frwtable author "Dario Sanfilippo";
declare frwtable copyright "Copyright (C) 2021 Dario Sanfilippo
<sanfilippo.dario@gmail.com>";
declare frwtable license "LGPL v3.0 license";
frwtable(N, S, init, w_idx, x, r_idx) =
lagrangeN(N, f_idx, par(i, N + 1, table(i_idx - int(N / 2) + i)))
with {
table(j) = rwtable(S, init, w_idx, x, int(ma.modulo(j, S)));
f_idx = ma.frac(r_idx) + int(N / 2);
i_idx = int(r_idx);
};
//=========================Misc functions=================================================
//========================================================================================
//---------------`(it.)remap`---------------------------------------------
// Linearly map from an input domain to an output range.
//
// #### Usage
//
// ```
// _ : remap(from1, from2, to1, to2) : _
// ```
//
// Where:
//
// * `from1`: the domain's lower bound.
// * `from2`: the domain's upper bound.
// * `to1`: the range's lower bound.
// * `to2`: the range's upper bound.
//
// Note that having `from1` == `from2` in the mapping will cause a division by zero that has to be taken in account.
//
// #### Example test program
// An oscillator remapped from [-1., 1.] to [100., 1000.]:
// ```
// os.osc(440) : it.remap(-1., 1., 100., 1000.)
// ```
//------------------------------------------------------------
declare remap author "David Braun";
remap(from1, from2, to1, to2, x) = to1 + (x-from1)*(to2-to1)/(from2-from1);
|