1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076
|
//################################## misceffects.lib ##########################################
// Collection of audio effects library. Its official prefix is `ef`.
//
// The library is organized into 7 sections:
//
// * [Dynamic](#Dynamic)
// * [Fibonacci](#fibonacci)
// * [Filtering](#filtering)
// * [Meshes](#meshes)
// * [Mixing](#mixing)
// * [Time Based](#time-based)
// * [Pitch Shifting](#pitch-shifting)
// * [Saturators](#saturators)
//
// #### References
// * <https://github.com/grame-cncm/faustlibraries/blob/master/misceffects.lib>
//########################################################################################
/************************************************************************
************************************************************************
FAUST library file
Copyright (C) 2003-2016 GRAME, Centre National de Creation Musicale
----------------------------------------------------------------------
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as
published by the Free Software Foundation; either version 2.1 of the
License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, write to the Free
Software Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
02111-1307 USA.
EXCEPTION TO THE LGPL LICENSE : As a special exception, you may create a
larger FAUST program which directly or indirectly imports this library
file and still distribute the compiled code generated by the FAUST
compiler, or a modified version of this compiled code, under your own
copyright and license. This EXCEPTION TO THE LGPL LICENSE explicitly
grants you the right to freely choose the license for the resulting
compiled code. In particular the resulting compiled code has no obligation
to be LGPL or GPL. For example you are free to choose a commercial or
closed source license or any other license if you decide so.
************************************************************************
************************************************************************/
ma = library("maths.lib");
ba = library("basics.lib");
de = library("delays.lib");
si = library("signals.lib");
an = library("analyzers.lib");
fi = library("filters.lib");
ro = library("routes.lib");
aa = library("aanl.lib");
ef = library("misceffects.lib"); // for compatible copy/paste out of this file
declare name "Misc Effects Library";
declare version "2.5.1";
//======================================Dynamic===========================================
//========================================================================================
//---------------------`(ef.)cubicnl`-----------------------
// Cubic nonlinearity distortion.
// `cubicnl` is a standard Faust function.
//
// #### Usage:
//
// ```
// _ : cubicnl(drive,offset) : _
// _ : cubicnl_nodc(drive,offset) : _
// ```
//
// Where:
//
// * `drive`: distortion amount, between 0 and 1
// * `offset`: constant added before nonlinearity to give even harmonics. Note: offset
// can introduce a nonzero mean - feed cubicnl output to dcblocker to remove this.
//
// #### References:
//
// * <https://ccrma.stanford.edu/~jos/pasp/Cubic_Soft_Clipper.html>
// * <https://ccrma.stanford.edu/~jos/pasp/Nonlinear_Distortion.html>
//------------------------------------------------------------
cubicnl(drive,offset) = *(pregain) : +(offset) : clip(-1,1) : cubic
with {
pregain = pow(10.0,2*drive);
clip(lo,hi) = min(hi) : max(lo);
cubic(x) = x - x*x*x/3;
postgain = max(1.0,1.0/pregain);
};
cubicnl_nodc(drive,offset) = cubicnl(drive,offset) : fi.dcblocker;
declare cubicnl author "Julius O. Smith III";
declare cubicnl license "STK-4.3";
declare cubicnl_nodc author "Julius O. Smith III";
declare cubicnl_nodc license "STK-4.3";
//-----------------`(ef.)gate_mono`-------------------
// Mono signal gate.
// `gate_mono` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : gate_mono(thresh,att,hold,rel) : _
// ```
//
// Where:
//
// * `thresh`: dB level threshold above which gate opens (e.g., -60 dB)
// * `att`: attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms)
// * `hold`: hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s)
// * `rel`: release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms)
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Noise_gate>
// * <http://www.soundonsound.com/sos/apr01/articles/advanced.asp>
// * <http://en.wikipedia.org/wiki/Gating_(sound_engineering)>
//------------------------------------------------------------
gate_mono(thresh,att,hold,rel,x) = x * gate_gain_mono(thresh,att,hold,rel,x);
declare gate_mono author "Julius O. Smith III";
declare gate_mono license "STK-4.3";
//-----------------`(ef.)gate_stereo`-------------------
// Stereo signal gates.
// `gate_stereo` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_ : gate_stereo(thresh,att,hold,rel) : _,_
// ```
//
// Where:
//
// * `thresh`: dB level threshold above which gate opens (e.g., -60 dB)
// * `att`: attack time = time constant (sec) for gate to open (e.g., 0.0001 s = 0.1 ms)
// * `hold`: hold time = time (sec) gate stays open after signal level < thresh (e.g., 0.1 s)
// * `rel`: release time = time constant (sec) for gate to close (e.g., 0.020 s = 20 ms)
//
// #### References
//
// * <http://en.wikipedia.org/wiki/Noise_gate>
// * <http://www.soundonsound.com/sos/apr01/articles/advanced.asp>
// * <http://en.wikipedia.org/wiki/Gating_(sound_engineering)>
//------------------------------------------------------------
gate_stereo(thresh,att,hold,rel,x,y) = ggm*x, ggm*y with {
ggm = gate_gain_mono(thresh,att,hold,rel,abs(x)+abs(y));
};
gate_gain_mono(thresh,att,hold,rel,x) = x : extendedrawgate : an.amp_follower_ar(att,rel) with {
extendedrawgate(x) = max(float(rawgatesig(x)),holdsig(x));
rawgatesig(x) = inlevel(x) > ba.db2linear(thresh);
minrate = min(att,rel);
inlevel = an.amp_follower_ar(minrate,minrate);
holdcounter(x) = (max(holdreset(x) * holdsamps,_) ~-(1));
holdsig(x) = holdcounter(x) > 0;
holdreset(x) = rawgatesig(x) < rawgatesig(x)'; // reset hold when raw gate falls
holdsamps = int(hold*ma.SR);
};
declare gate_stereo author "Julius O. Smith III";
declare gate_stereo license "STK-4.3";
declare gate_gain_mono author "Julius O. Smith III";
declare gate_gain_mono license "STK-4.3";
//=====================================Fibonacci==========================================
//========================================================================================
//---------------`(ef.)fibonacci`---------------------------
// Fibonacci system where the current output is the current
// input plus the sum of the previous N outputs.
//
// #### Usage
//
// ```
// _ : fibonacci(N) : _
// ```
//
// Where:
//
// * `N`: the Fibonacci system's order, where 2 is standard
//
// #### Example
// Generate the famous series: [1, 1, 2, 3, 5, 8, 13, ...]
//
// ```
// 1. : ba.impulsify : fibonacci(2)
// ```
//------------------------------------------------------------
declare fibonacci author "Dario Sanfilippo";
fibonacci(order) = +~(_<:sum(i, order, @(i)):>_);
//---------------`(ef.)fibonacciGeneral`----------------------
// Fibonacci system with customizable coefficients.
// The order of the system is inferred from the number of coefficients.
//
// #### Usage
//
// ```
// _ : fibonacciGeneral(wave) : _
// ```
//
// Where:
//
// * `wave`: a waveform such as `waveform{1, 1}`
//
// #### Example:
// Use the update equation `y = 2*y' + 3*y'' + 4*y'''`
//
// ```
// 1. : ba.impulsify : fibonacciGeneral(waveform{2, 3, 4})
// ```
//------------------------------------------------------------
declare fibonacciGeneral author "Dario Sanfilippo and David Braun";
fibonacciGeneral(wave) = +~(_<:sum(i, N, func(i)):>_)
with {
N = wave : _, !;
func(i) = @(i) : _ * (wave, i : rdtable);
};
//---------------`(ef.)fibonacciSeq`---------------------------
// First N numbers of the Fibonacci sequence [1, 1, 2, 3, 5, 8, ...]
// as parallel channels.
//
// #### Usage
//
// ```
// fibonacciSeq(N) : si.bus(N)
// ```
//
// Where:
//
// * `N`: The number of Fibonacci numbers to generate as channels.
//
//------------------------------------------------------------
fibonacciSeq(N) = iterate(N, (1, 1))
with {
iterate(1, (A0, A1)) = A0;
iterate(N, (A0, A1)) = A0 , iterate(N - 1, (A1, A0 + A1));
};
declare fibonacciSeq author "Dario Sanfilippo";
//=====================================Filtering==========================================
//========================================================================================
//-------------------------`(ef.)speakerbp`-------------------------------
// Dirt-simple speaker simulator (overall bandpass eq with observed
// roll-offs above and below the passband). `speakerbp` is a standard Faust function.
//
// Low-frequency speaker model = +12 dB/octave slope breaking to
// flat near f1. Implemented using two dc blockers in series.
//
// High-frequency model = -24 dB/octave slope implemented using a
// fourth-order Butterworth lowpass.
//
//
// #### Usage
// ```
// _ : speakerbp(f1,f2) : _
// ```
// #### Example
//
// Based on measured Celestion G12 (12" speaker):
// ```
// speakerbp(130,5000)
// ```
//------------------------------------------------------------
// TODO: perhaps this should be moved to physmodels.lib
// [JOS: I don't think so because it's merely a bandpass filter tuned to speaker bandwidth]
speakerbp(f1,f2) = fi.dcblockerat(f1) : fi.dcblockerat(f1) : fi.lowpass(4,f2);
declare speakerbp author "Julius O. Smith III";
declare speakerbp license "STK-4.3";
//------------`(ef.)piano_dispersion_filter`---------------
// Piano dispersion allpass filter in closed form.
//
// #### Usage
//
// ```
// piano_dispersion_filter(M,B,f0)
// _ : piano_dispersion_filter(1,B,f0) : +(totalDelay),_ : fdelay(maxDelay) : _
// ```
//
// Where:
//
// * `M`: number of first-order allpass sections (compile-time only)
// Keep below 20. 8 is typical for medium-sized piano strings.
// * `B`: string inharmonicity coefficient (0.0001 is typical)
// * `f0`: fundamental frequency in Hz
//
// #### Outputs
//
// * MINUS the estimated delay at `f0` of allpass chain in samples,
// provided in negative form to facilitate subtraction
// from delay-line length.
// * Output signal from allpass chain
//
// #### Reference
//
// * "Dispersion Modeling in Waveguide Piano Synthesis Using Tunable
// Allpass Filters", by Jukka Rauhala and Vesa Valimaki, DAFX-2006, pp. 71-76
// * <http://lib.tkk.fi/Diss/2007/isbn9789512290666/article2.pdf>
// An erratum in Eq. (7) is corrected in Dr. Rauhala's encompassing
// dissertation (and below).
// * <http://www.acoustics.hut.fi/research/asp/piano/>
//------------------------------------------------------------
// TODO: perhaps this should be moved to physmodels.lib?
// [JOS: I vote yes when there is a piano model in physmodels.lib.]
piano_dispersion_filter(M,B,f0) = -Df0*M,seq(i,M,fi.tf1(a1,1,a1))
with {
a1 = (1-D)/(1+D); // By Eq. 3, have D >= 0, hence a1 >= 0 also
D = exp(Cd - Ikey(f0)*kd);
trt = pow(2.0,1.0/12.0); // 12th root of 2
logb(b,x) = log(x) / log(b); // log-base-b of x
Ikey(f0) = logb(trt,f0*trt/27.5);
Bc = max(B,0.000001);
kd = exp(k1*log(Bc)*log(Bc) + k2*log(Bc)+k3);
Cd = exp((m1*log(M)+m2)*log(Bc)+m3*log(M)+m4);
k1 = -0.00179;
k2 = -0.0233;
k3 = -2.93;
m1 = 0.0126;
m2 = 0.0606;
m3 = -0.00825;
m4 = 1.97;
wT = 2*ma.PI*f0/ma.SR;
polydel(a) = atan(sin(wT)/(a+cos(wT)))/wT;
Df0 = polydel(a1) - polydel(1.0/a1);
};
declare piano_dispersion_filter author "Julius O. Smith III";
declare piano_dispersion_filter license "STK-4.3";
//-------------------------`(ef.)stereo_width`---------------------------
// Stereo Width effect using the Blumlein Shuffler technique.
// `stereo_width` is a standard Faust function.
//
// #### Usage
//
// ```
// _,_ : stereo_width(w) : _,_
// ```
//
// Where:
//
// * `w`: stereo width between 0 and 1
//
// At `w=0`, the output signal is mono ((left+right)/2 in both channels).
// At `w=1`, there is no effect (original stereo image).
// Thus, w between 0 and 1 varies stereo width from 0 to "original".
//
// #### Reference
//
// * "Applications of Blumlein Shuffling to Stereo Microphone Techniques"
// Michael A. Gerzon, JAES vol. 42, no. 6, June 1994
//------------------------------------------------------------
stereo_width(w) = shuffle : *(mgain),*(sgain) : shuffle
with {
shuffle = _,_ <: +,-; // normally scaled by 1/sqrt(2) for orthonormality,
mgain = 1-w/2; // but we pick up the needed normalization here.
sgain = w/2;
};
declare stereo_width author "Julius O. Smith III";
declare stereo_width license "STK-4.3";
//===========================================Meshes=======================================
//========================================================================================
// TODO: the following should be in physmodels.lib when it will be operational
// [JOS: I think a new "Meshes" section would fit well after Modal Percussions.]
//----------------------------------`(ef.)mesh_square`------------------------------
// Square Rectangular Digital Waveguide Mesh.
//
// #### Usage
//
// ```
// bus(4*N) : mesh_square(N) : bus(4*N)
// ```
//
// Where:
//
// * `N`: number of nodes along each edge - a power of two (1,2,4,8,...)
//
// #### Reference
//
// <https://ccrma.stanford.edu/~jos/pasp/Digital_Waveguide_Mesh.html>
//
// #### Signal Order In and Out
//
// The mesh is constructed recursively using 2x2 embeddings. Thus,
// the top level of `mesh_square(M)` is a block 2x2 mesh, where each
// block is a `mesh(M/2)`. Let these blocks be numbered 1,2,3,4 in the
// geometry NW,NE,SW,SE, i.e., as:
//
// 1 2
// 3 4
//
// Each block has four vector inputs and four vector outputs, where the
// length of each vector is `M/2`. Label the input vectors as Ni,Ei,Wi,Si,
// i.e., as the inputs from the North, East South, and West,
// and similarly for the outputs. Then, for example, the upper
// left input block of M/2 signals is labeled 1Ni. Most of the
// connections are internal, such as 1Eo -> 2Wi. The `8*(M/2)` input
// signals are grouped in the order:
//
// 1Ni 2Ni
// 3Si 4Si
// 1Wi 3Wi
// 2Ei 4Ei
//
// and the output signals are:
//
// 1No 1Wo
// 2No 2Eo
// 3So 3Wo
// 4So 4Eo
// or:
//
// In: 1No 1Wo 2No 2Eo 3So 3Wo 4So 4Eo
// Out: 1Ni 2Ni 3Si 4Si 1Wi 3Wi 2Ei 4Ei
//
// Thus, the inputs are grouped by direction N,S,W,E, while the
// outputs are grouped by block number 1,2,3,4, which can also be
// interpreted as directions NW, NE, SW, SE. A simple program
// illustrating these orderings is `process = mesh_square(2);`.
//
// #### Example
//
// Reflectively terminated mesh impulsed at one corner:
//
// ```
// mesh_square_test(N,x) = mesh_square(N)~(busi(4*N,x)) // input to corner
// with {
// busi(N,x) = bus(N) : par(i,N,*(-1)) : par(i,N-1,_), +(x);
// };
// process = 1-1' : mesh_square_test(4); // all modes excited forever
// ```
//
// In this simple example, the mesh edges are connected as follows:
//
// 1No -> 1Ni, 1Wo -> 2Ni, 2No -> 3Si, 2Eo -> 4Si,
// 3So -> 1Wi, 3Wo -> 3Wi, 4So -> 2Ei, 4Eo -> 4Ei
//
// A routing matrix can be used to obtain other connection geometries.
//------------------------------------------------------------
// four-port scattering junction:
mesh_square(1) =
si.bus(4) <: par(i,4,*(-1)), (si.bus(4) :> (*(.5)) <: si.bus(4)) :> si.bus(4);
// rectangular NxN square waveguide mesh:
mesh_square(N) = si.bus(4*N) : (route_inputs(N/2) : par(i,4,mesh_square(N/2)))
~(prune_feedback(N/2))
: prune_outputs(N/2) : route_outputs(N/2) : si.bus(4*N)
with {
// select block i of N, block size = M:
s(i,N,M) = par(j, M*N, Sv(i, j))
with { Sv(i,i) = si.bus(N); Sv(i,j) = si.block(N); };
// prune mesh outputs down to the signals which make it out:
prune_outputs(N)
= si.bus(16*N) :
si.block(N), si.bus(N), si.block(N), si.bus(N),
si.block(N), si.bus(N), si.bus(N), si.block(N),
si.bus(N), si.block(N), si.block(N), si.bus(N),
si.bus(N), si.block(N), si.bus(N), si.block(N)
: si.bus(8*N);
// collect mesh outputs into standard order (N,W,E,S):
route_outputs(N)
= si.bus(8*N)
<: s(4,N,8),s(5,N,8), s(0,N,8),s(2,N,8),
s(3,N,8),s(7,N,8), s(1,N,8),s(6,N,8)
: si.bus(8*N);
// collect signals used as feedback:
prune_feedback(N) = si.bus(16*N) :
si.bus(N), si.block(N), si.bus(N), si.block(N),
si.bus(N), si.block(N), si.block(N), si.bus(N),
si.block(N), si.bus(N), si.bus(N), si.block(N),
si.block(N), si.bus(N), si.block(N), si.bus(N) :
si.bus(8*N);
// route mesh inputs (feedback, external inputs):
route_inputs(N) = si.bus(8*N), si.bus(8*N)
<:s(8,N,16),s(4,N,16), s(12,N,16),s(3,N,16),
s(9,N,16),s(6,N,16), s(1,N,16),s(14,N,16),
s(0,N,16),s(10,N,16), s(13,N,16),s(7,N,16),
s(2,N,16),s(11,N,16), s(5,N,16),s(15,N,16)
: si.bus(16*N);
};
declare mesh_square author "Julius O. Smith III";
declare mesh_square license "STK-4.3";
//=====================================Mixing=============================================
//========================================================================================
// Implementation to share common code
dwmEnv(wetAmount, FX) = environment
{
N = inputs(FX);
wet(wg) = FX : par(i, N, *(wg));
dry(dg) = par(i, N, *(dg));
out(wg, dg) = si.bus(N) <: wet(wg), dry(dg) :> si.bus(N);
dryWetMixer = out(wetGain, dryGain)
with {
wetGain = wetAmount;
dryGain = 1. - wetGain;
};
dryWetMixerConstantPower = out(wetGain, dryGain)
with {
theta = ma.PI*wetAmount/2.;
dryGain = cos(theta)/sqrt(2.);
wetGain = sin(theta)/sqrt(2.);
};
};
//---------------`(ef.)dryWetMixer`-------------
// Linear dry-wet mixer for a N inputs and N outputs effect.
//
// #### Usage
//
// ```
// si.bus(inputs(FX)) : dryWetMixer(wetAmount, FX) : si.bus(inputs(FX))
// ```
//
// Where:
//
// * `wetAmount`: the wet amount (0-1). 0 produces only the dry signal and 1 produces only the wet signal
// * `FX`: an arbitrary effect (N inputs and N outputs) to apply to the input bus
//------------------------------------------------------------
declare dryWetMixer author "David Braun, revised by Stéphane Letz";
dryWetMixer(wetAmount, FX) = dwmEnv(wetAmount, FX).dryWetMixer;
//---------------`(ef.)dryWetMixerConstantPower`-------------
// Constant-power dry-wet mixer for a N inputs and N outputs effect.
//
// #### Usage
//
// ```
// si.bus(inputs(FX)) : dryWetMixerConstantPower(wetAmount, FX) :si.bus(inputs(FX))
// ```
//
// Where:
//
// * `wetAmount`: the wet amount (0-1). 0 produces only the dry signal and 1 produces only the wet signal
// * `FX`: an arbitrary effect (N inputs and N outputs) to apply to the input bus
//------------------------------------------------------------
declare dryWetMixerConstantPower author "David Braun, revised by Stéphane Letz";
dryWetMixerConstantPower(wetAmount, FX) = dwmEnv(wetAmount, FX).dryWetMixerConstantPower;
mixingEnv = environment
{
// Note that i goes from 0 to N-1.
// m goes from 0 to N-1 typically, but the output should be periodic with size N.
// In other words the output with m=-4*N is the same as -2*N, -1*N, 0, 1*N, 2*N etc.
phaseLoop(N, m, i) = select2(abs(phase1)<abs(phase2), phase2, phase1)
with {
phase1 = fmod(i-m,N);
phase2 = phase1+ba.if(phase1<0,N,-N);
};
phaseClamp(N, m, i) = i-aa.clip(0,N-1,m);
// We divide by sqrt(2) at the end so that for m=0.5,1.5,2.5 etc,
// the total gain is 1.0, matching phase2LinearWeight. However,
// this means for m=0,1,2,3, etc, the gain is (1./sqrt(2)~=0.7071).
phase2PowerWeight = aa.clip(-1, 1) : cos(_*ma.PI*.5) / sqrt(2.);
phase2LinearWeight = aa.clip(-1, 1) : 1-abs(_);
//------------------------`weightsPowerLoop`---------------------------
// "Fan out" an index into N weights between 0 and 1. At any given
// moment, two weights may be non-zero. Suppose they are N_m and N_{m+1}.
// Then `cos(N_m)^2+sin(N_{m+1})^2==0.5`.
//
// #### Usage
//
// ```
// _ : weightsPowerLoop(N) : si.bus(N)
// ```
// Where:
//
// * `N`: number of output weights
// * `m`: [0;N-1] (float) blend index. If m is outside [0;N-1], the behavior will loop.
//. So m=-N, m=0, and m=N should give the same output.
weightsPowerLoop(N, m) = par(i, N, gain(i))
with {
gain(i) = phaseLoop(N, m, i) : phase2PowerWeight;
};
// Same as above, but the two weights being blended at any moment SUM to 1.
weightsLinearLoop(N, m) = par(i, N, gain(i))
with {
gain(i) = phaseLoop(N, m, i) : phase2LinearWeight;
};
// Same as weightsPowerLoop, but m is clamped to [0;N-1]
weightsPowerClamp(N, m) = par(i, N, gain(i))
with {
gain(i) = phaseClamp(N, m, i) : phase2PowerWeight;
};
// Same as weightsLinearLoop, but m is clamped to [0;N-1]
weightsLinearClamp(N, m) = par(i, N, gain(i))
with {
gain(i) = phaseClamp(N, m, i) : phase2LinearWeight;
};
dryWetMixer(wetAmount, FX) = si.vecOp((weights, sounds), *) :> si.bus(C)
with {
N = 2; // We know in advance that there are 2 sounds (the dry and wet).
C = inputs(FX);
weights = weightsLinearClamp(N, wetAmount) <: ro.interleave(N, C);
sounds = si.bus(C) <: si.bus(C), FX;
};
dryWetMixerConstantPower(wetAmount, FX) = si.vecOp((weights, sounds), *) :> si.bus(C)
with {
N = 2; // We know in advance that there are 2 sounds (the dry and wet).
C = inputs(FX);
weights = weightsPowerClamp(N, wetAmount) <: ro.interleave(N, C);
sounds = si.bus(C) <: si.bus(C), FX;
};
// Suppose `sounds` is N buses, each of C channels.
// We want to linearly mix the buses using index `m` [0;N-1]
mixLinearClamp(N, C, m) = si.vecOp((weights, si.bus(N)), *) :> si.bus(C)
with {
weights = weightsLinearClamp(N, m) <: ro.interleave(N, C);
};
mixLinearLoop(N, C, m) = si.vecOp((weights, si.bus(N)), *) :> si.bus(C)
with {
weights = weightsLinearLoop(N, m) <: ro.interleave(N, C);
};
mixPowerClamp(N, C, m) = si.vecOp((weights, si.bus(N)), *) :> si.bus(C)
with {
weights = weightsPowerClamp(N, m) <: ro.interleave(N, C);
};
mixPowerLoop(N, C, m) = si.vecOp((weights, si.bus(N)), *) :> si.bus(C)
with {
weights = weightsPowerLoop(N, m) <: ro.interleave(N, C);
};
};
//---------------`(ef.)mixLinearClamp`-------------------------------------------------
// Linear mixer for `N` buses, each with `C` channels. The output will be a sum of 2 buses
// determined by the mixing index `mix`. 0 produces the first bus, 1 produces the
// second, and so on. `mix` is clamped automatically. For example, `mixLinearClamp(4, 1, 1)`
// will weight its 4 inputs by `(0, 1, 0, 0)`. Similarly, `mixLinearClamp(4, 1, 1.1)`
// will weight its 4 inputs by `(0,.9,.1,0)`.
//
// #### Usage
//
// ```
// si.bus(N*C) : mixLinearClamp(N, C, mix) : si.bus(C)
// ```
//
// Where:
//
// * `N`: the number of input buses
// * `C`: the number of channels in each bus
// * `mix`: the mixing index, continuous in [0;N-1].
//---------------------------------------------------------------------------------------
declare mixLinearClamp author "David Braun";
mixLinearClamp = mixingEnv.mixLinearClamp;
//---------------`(ef.)mixLinearLoop`-------------------------------------------------
// Linear mixer for `N` buses, each with `C` channels. Refer to `mixLinearClamp`. `mix`
// will loop for multiples of `N`. For example, `mixLinearLoop(4, 1, 0)` has the same
// effect as `mixLinearLoop(4, 1, -4)` and `mixLinearLoop(4, 1, 4)`.
//
// #### Usage
//
// ```
// si.bus(N*C) : mixLinearLoop(N, C, mix) : si.bus(C)
// ```
//
// Where:
//
// * `N`: the number of input buses
// * `C`: the number of channels in each bus
// * `mix`: the mixing index (N-1) selects the last bus, and 0 or N selects the 0th bus.
//---------------------------------------------------------------------------------------
declare mixLinearLoop author "David Braun";
mixLinearLoop = mixingEnv.mixLinearLoop;
//---------------`(ef.)mixPowerClamp`-------------------------------------------------
// Constant-power mixer for `N` buses, each with `C` channels. The output will be a sum of 2 buses
// determined by the mixing index `mix`. 0 produces the first bus, 1 produces the
// second, and so on. `mix` is clamped automatically. `mixPowerClamp(4, 1, 1)`
// will weight its 4 inputs by `(0, 1./sqrt(2), 0, 0)`. Similarly, `mixPowerClamp(4, 1, 1.5)`
// will weight its 4 inputs by `(0,.5,.5,0)`.
//
// #### Usage
//
// ```
// si.bus(N*C) : mixPowerClamp(N, C, mix) : si.bus(C)
// ```
//
// Where:
//
// * `N`: the number of input buses
// * `C`: the number of channels in each bus
// * `mix`: the mixing index, continuous in [0;N-1].
//---------------------------------------------------------------------------------------
declare mixPowerClamp author "David Braun";
mixPowerClamp = mixingEnv.mixPowerClamp;
//---------------`(ef.)mixPowerLoop`-----------------------------------------------------
// Constant-power mixer for `N` buses, each with `C` channels. Refer to `mixPowerClamp`. `mix`
// will loop for multiples of `N`. For example, `mixPowerLoop(4, 1, 0)` has the same effect
// as `mixPowerLoop(4, 1, -4)` and `mixPowerLoop(4, 1, 4)`.
//
// #### Usage
//
// ```
// si.bus(N*C) : mixPowerLoop(N, C, mix) : si.bus(C)
// ```
//
// Where:
//
// * `N`: the number of input buses
// * `C`: the number of channels in each bus
// * `mix`: the mixing index (N-1) selects the last bus, and 0 or N selects the 0th bus.
//---------------------------------------------------------------------------------------
declare mixPowerLoop author "David Braun";
mixPowerLoop = mixingEnv.mixPowerLoop;
//========================================Time Based======================================
//========================================================================================
//----------`(ef.)echo`----------
// A simple echo effect.
// `echo` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : echo(maxDuration,duration,feedback) : _
// ```
//
// Where:
//
// * `maxDuration`: the max echo duration in seconds
// * `duration`: the echo duration in seconds
// * `feedback`: the feedback coefficient
//----------------------------------------------------
declare echo author "Romain Michon";
echo(maxDuration,duration,feedback) = +~de.delay(maxDel,del)*feedback
with{
maxDel = ma.SR*maxDuration;
del = ma.SR*duration;
};
// TODO demo function for echo
//--------------------`(ef.)reverseEchoN`-------------------
// Reverse echo effect.
//
// #### Usage
//
// ```
// _ : ef.reverseEchoN(N,delay) : si.bus(N)
// ```
//
// Where:
//
// * `N`: Number of output channels desired (1 or more), a constant numerical expression
// * `delay`: echo delay (integer power of 2)
//
// #### Demo
//
// ```
// _ : dm.reverseEchoN(N) : _,_
// ```
//
// #### Description
//
// The effect uses N instances of `reverseDelayRamped` at different phases.
//
//------------------------------------------------------------
reverseEchoN(N,delMax) = _<: par(i,N,ef.reverseDelayRamped(delMax,i/N));
declare reverseEchoN author "Julius O. Smith III";
declare reverseEchoN license "STK-4.3";
//-------------------`(ef.)reverseDelayRamped`------------------
// Reverse delay with amplitude ramp.
//
// #### Usage
//
// ```
// _ : ef.reverseDelayRamped(delay,phase) : _
// ```
//
// Where:
//
// * `delay`: echo delay (integer power of 2)
// * `phase`: float between 0 and 1 giving ramp delay phase*delay
//
// #### Demo
//
// ```
// _ : ef.reverseDelayRamped(32,0.6) : _,_
// ```
//
//------------------------------------------------------------
reverseDelayRamped(delMax,phs) = rampGain * de.delay(delMax,del) with {
rampGain = 4 * (del/delMax) * (1 - del/delMax); // suppress click when delay-line wraps around
delOffset = int(floor(0.5 + delMax * max(0,min(0.999999,phs)))); // starting point in delay line
startPulse = (1-1') * delOffset;
del = int(startPulse : + ~ +(2)) & (delMax-1);
};
declare reverseDelayRamped author "Julius O. Smith III";
declare reverseDelayRamped license "STK-4.3";
//-------------------`(ef.)uniformPanToStereo`------------------
// Pan nChans channels to the stereo field, spread uniformly left to right.
//
// #### Usage
//
// ```
// si.bus(N) : ef.uniformPanToStereo(N) : _,_
// ```
//
// Where:
//
// * `N`: Number of input channels to pan down to stereo, a constant numerical expression
//
// #### Demo
//
// ```
// _,_,_ : ef.uniformPanToStereo(3) : _,_
// ```
//
//------------------------------------------------------------
uniformPanToStereo(N) = si.bus(N) <: par(i,2*N,_) :
(par(i,N,*(i/(N-1))) :> _),
(par(i,N,*(1-i/(N-1))) :> _);
declare uniformPanToStereo author "Julius O. Smith III";
declare uniformPanToStereo license "STK-4.3";
//---------------------`(ef.)tapeStop`-----------------------------------------
// A tape-stop effect, like putting a finger on a vinyl record player.
//
// #### Usage:
//
// ```
// _,_ : tapeStop(2, LAGRANGE_ORDER, MAX_TIME_SAMP,
// crossfade, gainAlpha, stopAlpha, stopTime, stop) : _,_
// ```
//
// ```
// _ : tapeStop(1, LAGRANGE_ORDER, MAX_TIME_SAMP,
// crossfade, gainAlpha, stopAlpha, stopTime, stop) : _
// ```
//
// Where:
//
// * `C`: The number of input and output channels.
// * `LAGRANGE_ORDER`: The order of the Lagrange interpolation on the delay line. [2-3] recommended.
// * `MAX_TIME_SAMP`: Maximum stop time in samples
// * `crossfade`: A crossfade in samples to apply when resuming normal playback. Crossfade is not applied during the enabling of the tape-stop.
// * `gainAlpha`: During the tape-stop, lower alpha stays louder longer. Safe values are in the range [.01,2].
// * `stopAlpha`: `stopAlpha==1` represents a linear deceleration (constant force). `stopAlpha<1` represents an initially weaker, then stronger force. `stopAlpha>1` represents an initially stronger, then weaker force. Safe values are in the range [.01,2].
// * `stopTime`: Desired duration of the stop time, in samples.
// * `stop`: When `stop` becomes positive, the tape-stop effect will start. When `stop` becomes zero, normal audio will resume via crossfade.
//-----------------------------------------------------------------------------
tapeStop(C, LAGRANGE_ORDER, MAX_TIME_SAMP, crossfade, gainAlpha, stopAlpha, stopTime, stop) =
(tapeStopTick(C) ~ _) : !,si.bus(C)
with {
tapeStopTick(C, _delaySamples) = delaySamples, circuitFinal
with {
// Where `stopCounter` goes from 0 to stopTime (or higher)
// When `stopCounter` is 0, curve's output is 1.
// When `stopCounter` is stopTime, curve's output is 0.
curve(alpha) = 1-stopCounter/stopTime : max(0) : pow(_, alpha)
with {
// when stop is pulsed, count samples starting at 0
stopCounter = *(ba.if(stop&(1-stop'),0,1))+1~_ : -(1);
};
minDelay = (LAGRANGE_ORDER-1)/2;
delayFunc(curDel) = par(i, C, de.fdelayltv(LAGRANGE_ORDER, MAX_TIME_SAMP, max(curDel, minDelay)));
delaySamples = ba.if(stop&(1-stop'), minDelay, _delaySamples) + delayDelta
with {
/*
Velocity describes the velocity of the read-index in units of samples per sample.
If the velocity is 1, then the read-index is moving as fast as the write-index
is moving, and there is no delay. If the velocity is 0, then the read-index is "stuck"
on a particular location. During a tape-stop, our technique is to animate velocity
from 1 to 0 according to a curve based on stopAlpha. We discretize the accumulated
delay with delayDelta. Note that when velocity is zero, then delayDelta is 1. At this
moment the delay line wrote 1 new sample (as always), but our delayDelta INCREASED by one.
This means it's playing same sample twice in a row, and the record player is motionless.
When `stop` triggers by becoming 1, then delaySamples is reset to `minDelay`. At this moment
we should have already been listening to the circuitNormal which is using `minDelay`.
Therefore, there isn't a click.
*/
velocity = curve(stopAlpha);
delayDelta = 1-velocity;
};
circuitNormal = delayFunc(0); // Don't use si.bus(C) because of minDelay
circuitSlowdown = delayFunc(delaySamples) : par(i, C, _*g)
with {
g = curve(gainAlpha);
};
circuitFinal = ba.selectmulti(actualCrossfade, (circuitNormal, circuitSlowdown), stop)
with {
actualCrossfade = ba.if(stop,0,crossfade); // only crossfade when resuming normal playback
};
};
};
declare tapeStop author "David Braun";
declare tapeStop copyright "Copyright (C) 2024 by David Braun <braun@ccrma.stanford.edu>";
declare tapeStop license "MIT-style STK-4.3 license";
//=======================================Pitch Shifting===================================
//========================================================================================
//--------------`(ef.)transpose`----------------
// A simple pitch shifter based on 2 delay lines.
// `transpose` is a standard Faust function.
//
// #### Usage
//
// ```
// _ : transpose(w, x, s) : _
// ```
//
// Where:
//
// * `w`: the window length (samples)
// * `x`: crossfade duration duration (samples)
// * `s`: shift (semitones)
//-----------------------------------------
transpose(w, x, s, sig) = de.fdelay(maxDelay,d,sig)*ma.fmin(d/x,1) +
de.fdelay(maxDelay,d+w,sig)*(1-ma.fmin(d/x,1))
with {
maxDelay = 65536;
i = 1 - pow(2, s/12);
d = i : (+ : +(w) : fmod(_,w)) ~ _;
};
//=======================================Saturators=======================================
//========================================================================================
nonlinearityEnv = environment
{
// Turn a function f(x) into a odd function g(x) such that
// g(x)==f(x) for x>=0, AND g(x)==-g(-x).
makeOdd(f, x) = x : optionalNegate : f : optionalNegate
with {
optionalNegate(y) = ba.if(x<0, -y, y);
};
// Wavefolder/Wavefolding
// coded by David Braun
// Reference: Chapter 10: Nonlinear Processing. Figure 10.7
// U. Zölzer: Digital Audio Signal Processing. John Wiley & Sons Ltd, 2022.
wavefold(width, x) = makeOdd(f, x)
with {
f(x) = ba.if(x>(1-2*a), tri, x) : *(g)
with {
// a is the adjusted width.
a = width : aa.clip(0, 1) : *(.4);
g = 1/(1-2*a); // peak-level normalization
// triangle-like function
tri = 1 - 2.5*a + a*abs(ma.frac((x-(1-2*a))/(2*a))-.5);
};
};
};
//---------------`(ef.)softclipQuadratic`-------------------------------------------------
// Quadratic softclip nonlinearity.
//
// #### Usage
//
// ```
// _ : softclipQuadratic : _
// ```
//
// #### References
//
// * U. Zölzer: Digital Audio Signal Processing. John Wiley & Sons Ltd, 2022.
//---------------------------------------------------------------------------------------
declare softclipQuadratic author "David Braun";
declare softclipQuadratic copyright "Copyright (C) 2024 David Braun";
declare softclipQuadratic license "MIT license";
softclipQuadratic(x) = ba.ifNcNo(2, 1,
absX < 1/3, 2*x,
absX <= 2/3, ma.signum(x)*(3-(2-absX*3)^2)/3,
ma.signum(x)
)
with {
absX = abs(x);
};
//---------------`(ef.)wavefold`-------------------------------------------------
// Wavefolding nonlinearity.
//
// #### Usage
//
// ```
// _ : wavefold(width) : _
// ```
//
// Where:
//
// * `width`: The width of the folded section [0..1] (float).
//---------------------------------------------------------------------------------------
declare wavefold author "David Braun";
wavefold = nonlinearityEnv.wavefold;
//////////////////////////////////Deprecated Functions////////////////////////////////////
// This section implements functions that used to be in music.lib but that are now
// considered as "deprecated".
//////////////////////////////////////////////////////////////////////////////////////////
echo1s = vgroup("echo 1000", +~(de.delay(65536, int(hslider("millisecond", 0, 0, 1000, 0.10)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo2s = vgroup("echo 2000", +~(de.delay(131072, int(hslider("millisecond", 0, 0, 2000, 0.25)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo5s = vgroup("echo 5000", +~(de.delay(262144, int(hslider("millisecond", 0, 0, 5000, 0.50)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo10s = vgroup("echo 10000", +~(de.delay(524288, int(hslider("millisecond", 0, 0, 10000, 1.00)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo21s = vgroup("echo 21000", +~(de.delay(1048576, int(hslider("millisecond", 0, 0, 21000, 1.00)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
echo43s = vgroup("echo 43000", +~(de.delay(2097152, int(hslider("millisecond", 0, 0, 43000, 1.00)*ba.millisec)-1) * (hslider("feedback", 0, 0, 100, 0.1)/100.0)));
|