1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
|
#
# Example:
# Explore the symmetric and skew stable distributions
#
# Description:
# Part I: Explore Symmetric Stable Distributions. The example creates
# random deviates from a symmetric stable df close to Cauchy
# distribution, alpha=1.001, and close to a Gaussian df, alpha=1.999.
# It plots a histogram and compares the empirical dfs for two alphas,
# alpha=0.5 and 1.5, with those obtained from the Cauchy and Gaussian
# dfs. In addition it plots the cumulated df for the alpha values
# 1.001 and 1.999. The function implements J.H. McCulloch's Fortran
# program for symmetric distributions.
# Note, that McCullochs approach has a density precision of 0.000066
# and a distribution precision of 0.000022 for alpha in the range
# [0.84, 2.00]. We have added only first order tail approximation to
# calculate the tail density and probability. This has still to be
# improved!
# Part II: Explore Symmetric Stable Distributions. The example
# investigate the limit behaviour of the "symstb" function.
# Part III: # Investigate the Tails of the Symmetric Stable Distribution
# The example investigates the tail behaviour of the "symstb" function.
# Part IV: Plot alpha stable density function for alpha values 0.5,
# 0.75, 1.01, 1.25, 1.5 and beta=0.5. Note, that the function
# doesn't yet apply for some special x if they are integer multiples
# of alpha and/or beta. These cases have to be considered separately
# and to be implemented!
#
# Author:
# (C) 2002, Diethelm Wuertz, GPL
#
################################################################################
## Part I: Symmetric Stable Distribution
# Settings:
par(mfcol = c(3, 2), err = -1)
# RSYMSTB(1.01) - Symmetric Stable Distribution - Close Cauchy:
x = seq(-7.5, 7.5, length = 256)
r = rsymstb(4096, alpha = 1.01)
plot(r, type = "l", main = "RSYMSTB(1.01) Series")
d = dsymstb(x, alpha = 1.01)
d.cauchy = dcauchy(x)
plot(x, log(d), type="l", main="DSYMSTB(1.01) - Close Cauchy")
density = density(r, from = -10, to = 10, n = 256)
points(density$x, log(density$y), col = "steelblue4")
lines(x, log(d.cauchy), col = 6)
p = psymstb(x, alpha = 1.01)
p.cauchy = pcauchy(x)
plot(x, p, type="l", main="PSYMSTB(1.01) - Close Cauchy")
points(sort(r), (1:length(r))/length(r), col = "steelblue4")
lines(x, p.cauchy, col = 6)
# RSYMSTB(1.99) - Symmetric Stable Distribution - Close Cauchy:
x = seq(-5, 5, length = 256)
r = rsymstb(4096, alpha = 1.99)
plot(r, type = "l", main = "RSYMSTB(1.99) Series")
d = dsymstb(x, alpha = 1.99)
d.norm = dnorm(x, sd = sqrt(2))
plot(x, log(d), type = "l", main = "DSYMSTB(1.99) - Close Normal")
density = density(r, from = -5, to = 5, n = 256)
points(density$x, log(density$y), col = "steelblue4")
lines(x, log(d.norm), col = 6)
p = psymstb(x, alpha = 1.99)
p.norm = pnorm(x, sd = sqrt(2))
plot(x, p, type="l", main="PSYMSTB(1.99) - Close Normal")
points(sort(r), (1:length(r))/length(r), col = "steelblue4")
lines(x, p.norm, col = 6)
################################################################################
## PART II: Limit Behaviour of the Symmetric Stable Distribution
# Settings:
par(mfrow = c(3, 2), err = -1)
# Histogram of Symmetric Stable Deviates with alpha=1.001
# Comparison with Cauchy Density
# Figure 1 - Histogram Close to Cauchy / alpha=1.001
x = rsymstb(n = 5000, alpha = 1.001)
hist(x[abs(x)<10], probability = TRUE, nclass = 40, xlab = "x",
ylim = c(0.0,0.5), main = "Close Cauchy")
x = seq(from = -10, to = 10, by = 0.10)
lines(x, dcauchy(x))
# Histogram of Symmetric Stable Deviates with alpha=1.999
# Comparison with Gaussian Density, Note: sd=sqrt(2)!
# Figure 2 - Histogram Close to Gaussian / alpha=1.999
x = rsymstb(n = 5000, alpha = 1.999)
hist(x[abs(x)<10], probability = TRUE, nclass = 40, xlab = "x",
ylim=c(0.0,0.5), main = "Close Gaussian")
x = seq(from = -10, to = 10, by = 0.10)
lines(x, dnorm(x, sd = sqrt(2)))
# Histogram of Symmetric Stable Deviates with alpha=0.500
# Comparison with Stable Density "dstable"
# Figure 3 - Symmetric Stable Density / alpha=0.500
x = rsymstb(n = 5000, alpha = 0.500)
hist(x[abs(x)<10], probability = TRUE, nclass = 40, xlab = "x",
ylim = c(0.0, 0.6), main = "alpha=0.500")
x = seq(from = -10, to = 10, by = 0.05)
lines(x, dsymstb(x, alpha = 0.500))
# Histogram of Symmetric Stable Deviates with alpha=1.500
# Comparison with Stable Density "dsymstb"
# Figure 4 - Symmetric Stable Density / alpha=1.500
x = rsymstb(n = 5000, alpha = 1.500)
hist(x[abs(x)<10], probability = TRUE, nclass = 40, xlab = "x",
ylim = c(0.0, 0.6), main = "alpha=1.500")
x = seq(from=-10, to=10, by=0.25)
lines(x, dsymstb(x, alpha=1.500))
# CDF of Symmetric Stable Deviates with alpha=1.001
# Comparison with Cauchy Probability Function
# Figure 5 - CDF Close to Cauchy / alpha=1.001
n = 500
x = sort(rsymstb(n, alpha = 1.001))
y = (1:n)/n
plot(x, y, xlim = c(-120, 120), main = "Close Cauchy")
x = seq(from = -100, to = 100, by = 1)
lines(x, pcauchy(x), col = 5)
lines(x, psymstb(x, alpha = 1.001), col = "steelblue4")
# CDF of Symmetric Stable Deviates with alpha=1.999
# Comparison with Gaussian Probability Function, Note: sd=sqrt(2)!
# Figure 6 - CDF Close to Gaussian / alpha=1.999
n = 500
x = sort(rsymstb(n, alpha = 1.999))
y = (1:n)/n
plot(x, y, xlim = c(-10, 10), main = "Close Gaussian")
x = seq(from = -10, to = 10, by = 0.25)
lines(x, pnorm(x, sd = sqrt(2)), col = "steelblue4")
lines(x, psymstb(x, alpha=1.999), col = "steelblue4")
################################################################################
## PART III:
# Settings:
par(mfrow = c(2, 2))
# Show the precision of the DF in the Tail:
# There remains somw further work to do ...
x = seq(-20, 0, 1)
alpha = 1.9 # worst in the limit alpha -> 2.0
plot(x, log(dsymstb(x, alpha)), type = "b", main = "dsymstb")
plot(x, log(psymstb(x, alpha)), type = "b", main = "psymstb")
x = seq(-12, -3, 0.25)
plot(x, log(dsymstb(x, alpha)), type = "b", main = "dsymstb")
plot(x, log(psymstb(x, alpha)), type = "b", main = "psymstb")
################################################################################
## PART IV: Skew Stable Distribution
# Settings:
par(mfcol = c(3, 3))
# RSTABLE(1.1, 0.5) - Stable Distribution:
x = seq(from = -50, to = 50, length = 100)
r = rstable(4096, alpha = 0.4, beta = 0.5)
plot(r, type = "l", main = "RSTABLE (0.4,0.5)")
d = dstable(x, alpha = 0.4, beta = 0.5)
plot(x, log(d), type = "l", main = "DSTABLE (0.4,0.5)")
density = density(r[abs(r)<10], n = 100)
points(density$x, log(density$y), col = "steelblue4")
p = pstable(x, alpha=0.4, beta = 0.5)
plot(x, p, type = "l", ylim = c(0, 1), main = "PSTABLE (0.4,0.5)")
points(sort(r), (1:length(r))/length(r), col = "steelblue4")
# RSTABLE(1.1, 0.5) - Stable Distribution:
x = seq(from = -10, to = 10, length = 100)
r = rstable(4096, alpha = 1.1, beta = 0.5, gamma = 1.5, delta = -1.0)
plot(r, type = "l", main = "RSTABLE (1.1,0.5,1.5,-1.0)")
d = dstable(x, alpha = 1.1, beta = 0.5, gamma = 1.5, delta = -1.0)
plot(x, log(d), type = "l", main = "DSTABLE (1.1,0.5,1.5,-1.0)")
density = density(r[abs(r)<10], n = 100)
points(density$x, log(density$y), col = "steelblue4")
p = pstable(x, alpha = 1.1, beta = 0.5, gamma = 1.5, delta = -1.0)
plot(x, p, type = "l", ylim = c(0, 1), main = "PSTABLE (1.1,0.5,1.5,-1.0)")
points(sort(r), (1:length(r))/length(r), col = "steelblue4")
# RSTABLE(1.9, 0.5) - Stable Distribution:
x = seq(from = -5, to = 5, length = 100)
r = rstable(4096, alpha = 1.9, beta = 0.5)
plot(r, type = "l", main = "RSTABLE (1.9,0.5)")
d = dstable(x, alpha = 1.9, beta = 0.5)
plot(x, log(d), type = "l", main = "DSTABLE (1.9,0.5)")
density = density(r, n = 200)
points(density$x, log(density$y), col = "steelblue4")
p = pstable(x, alpha = 1.9, beta = 0.5)
plot(x, p, type = "l", main = "PSTABLE (1.9,0.5)")
points(sort(r), (1:length(r))/length(r), col = "steelblue4")
|