1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208
|
#
# Example:
# Compute Basic Statistics of Time Series Data, write a bootstrapped
# mean function, explore aggregation effection with the central
# limit theory, and plot and fit distributions on logarithmic scales.
#
# Description:
# Part I: Calculate skewness, kurtosis and further basic statistical
# values of the returns of the NYSE Composite Index using the functions
# "skewness", "kurtosis", and "basicStats".
# Part II: Write a function to compute the bootstrapped mean value.
# Use the bootstrap function from the "Hmisc" package.
# Part III: Explore Aggregation Effects with the Central Limit Theorem
# This example creates a Quantile-Quantile Plot for the NYSE Composite
# Index residuals. Calculate mean, variance, skewness and kurtosis.
# It also tests the program for a set of iid residuals of equal size
# derived from a Gaussian distribution, compared the data with those
# obtained from an aggregated time series as a result of the Central
# Limit Theorem.
# Part IV: Plot and fit distributions on logarithmic scales.
# This example plots the NYSE residuals on a lin-log and on a log-log
# scale. It compares the results with iid Gaussian residuals with
# the same mean and variance and equal length.
# Part V: Plot and fit distributions on double logarithmic scales.
# This example plots the PDF of the NYSE residuals on a double
# log-scale. It fits the tail and calculates the intercept and slope.
# In addition itompares the result to simulated residuals obtained
# from an alpha-stable process.
# Author:
# (C) 2002, Diethelm Wuertz, GPL
#
# ------------------------------------------------------------------------------
################################################################################
## Part I: Calculate Basic Statistics:
# Settings:
data(nyseres)
# Skewness / Kurtosis:
print(skewness(nyseres))
print(kurtosis(nyseres))
# Basic Statistics:
print(basicStats(nyseres))
################################################################################
## Part II: Bootstrapped Mean:
bootMean =
function(x, B = 1000, ci = 0.95, na.rm = TRUE, reps = FALSE)
{ # A function implemented by Diethelm Wuertz
# Description:
# A very fast implementation of the basic nonparametric
# bootstrap for obtaining confidence limits for the population
# mean without assuming normality.
# Arguments:
# B - number of bootstrap resamples, by default 1000.
# ci - specifies the confidence level (0-1) for interval
# estimation of the population mean.
# na.rm - a logical flag, should NAs be removed?
# reps - set to TRUE to have bootMean return the vector
# of bootstrapped means as the reps attribute of
# the returned object .
# Notes:
# The function calls "smean.cl.boot" from the "Hisc" package
# Requirements: require(Hmisc)
# FUNCTION:
# Requirements:
sink("@sink@") # Don't print loading ...
library(Design, warn.conflicts = FALSE)
library(Hmisc, warn.conflicts = FALSE)
sink()
unlink("@sink@")
# Return Value:
smean.cl.boot(x = x, conf.int = ci, B = B, na.rm = na.rm, reps = reps)}
# Bootstrapped Mean:
print(bootMean(nyseres))
################################################################################
## Part III: Explore aggregation effection with CLT
# Settings:
options(warn = -1)
par(mfrow = c(3, 3), cex = 0.6, err=-1)
data(nyseres)
# CLT Plot:
set.seed(11)
for (k in 1:2) {
if (k == 4) par(ask = TRUE)
le = 8390 # length of nyseres
if (k == 1) {r = rt(le, df = 6); title = "Student-t df=6"}
if (k == 2) {r = nyseres[,1]; title = "NYSE Residuals"}
if (k == 3) {r = rexp(le); title = "Exponential"}
# How look the plots when the 2nd moment doesn't exist ?
if (k == 4) {r = rstable(le, alpha = 1.75, beta = 0)
title = "Stable alpha=1.75"}
if (k == 5) {r = runif(le); title = "Uniform"}
if (k == 6) {r = rnorm(le); title = "Normal"}
# Normalize:
r = (r - mean(r))/sqrt(var(r))
cat("\n", title, "\n")
cat(" Length of r: ", le, "\n")
n = 2
x = apply(matrix(r, ncol = n), MARGIN = 1, FUN = sum)/sqrt(n)
logpdfPlot(x[abs(x) < 5], n = 64, main=title, xlim=c(-5,5),
ylim = c(-7, 0), xlab = "x", ylab = "Density")
cat(" Skewness: ",skewness(x), " Kurtosis: ",kurtosis(x), "\n")
n = 10
x = apply(matrix(r, ncol = n), MARGIN = 1, FUN = sum)/sqrt(n)
logpdfPlot(x[abs(x) < 5], n = 64, xlim=c(-5, 5), ylim=c(-7,0),
xlab="x", ylab="Density")
cat(" Skewness: ",skewness(x), " Kurtosis: ",kurtosis(x), "\n")
n = 2
x = apply(matrix(r, ncol = n), MARGIN = 1, FUN = sum)/sqrt(n)
qqgaussPlot(x, col = 1, ylab = "Empirical Data")
n = 10
x = apply(matrix(r, ncol = n), MARGIN = 1, FUN = sum)/sqrt(n)
points(qqnorm(x[abs(x) < 5], plot = FALSE), col = 6, pch = 3)
if (k == 4) par(ask = FALSE)}
################################################################################
## Part IV:
# Settings:
cat("\nPlot Distributions on Logarithmic Scales")
cat("\nData: NYSE Composite Index log Returns \n")
par(mfrow = c(2, 2), err = -1)
data(nyseres)
# Plot the log-PDF:
cat("\n Figure 1 - log PDF NYSE Plot")
x = nyseres[,1]
result = logpdfPlot(x, n = 501,
xlab = "log Return", ylab = "log Empirical PDF",
xlim = c(-0.2, 0.2), main = "log PDF NYSE Plot")
# Simulate a Gaussian with same mean and variance:
cat("\n Figure 2 - log PDF Gaussian Plot")
result = logpdfPlot(sqrt(var(x))*rnorm(length(x))+mean(x), n = 251,
xlab = "log Return", ylab = "log Gaussian PDF",
xlim = c(-0.2, 0.2), main = "log PDF Gaussian Plot")
# Plot the log-log-PDF:
cat("\n Figure 3 - log-log PDF NYSE Plot")
result = logpdfPlot(x, n=501, type="log-log",
xlab = "log Return", ylab = "log Empirical PDF",
xlim = c(-7, -1), main = "log-log PDF NYSE Plot")
# Simulate a Gaussian with same mean and variance:
cat("\n Figure 4 - log-log PDF Gaussian Plot \n")
result = logpdfPlot(
sqrt(var(x))*rnorm(length(x))+mean(x), n = 251, type = "log-log",
xlab = "log Return", ylab = "log Gaussian PDF",
xlim = c(-7, -1), main = "log-log PDF Gaussian Plot")
################################################################################
## Part V:
# Settings:
cat("\nFit the Tails in a log-log PDF Plot")
cat("\nData: NYSE Composite Index log Returns \n")
par(mfrow = c(1, 1))
data(nyseres)
# Plot the log-log-PDF:
x = nyseres[,1]
result = logpdfPlot(x, n = 501, type = "log-log",
xlab="log |Return|", ylab = "log PDF",
xlim=c(-7, -1), ylim = c(-6, 5),
main="log-log PDF NYSE Plot")
# Combined Tail Fit:
y1 = log(result$counts)
x1 = log(result$breaks)
y1 = y1[x1 > (-4.0) & x1 < (-3.0)]
x1 = x1[x1 > (-4.0) & x1 < (-3.0)]
l = lsfit(x1, y1)
abline(l$coefficients)
# Compare with alpha-Stable Distribution:
print("Compare with alpha-Stable Distribution")
alpha = 1.7
sd = sqrt(var(x)/2)
x3 = result$breaks
y3 = dstable(x3/sd, alpha, beta = 0)/sd
points(log(x3), log(y3), pch = 8, col = 4)
lines(log(x3), log(y3), col = 4)
# Print Intercept/Slope from Tail Fit:
print("Fittet Parameters Intercept and Slope")
print(l$coefficients)
################################################################################
|