File: A2-BasicStatistics.Rd

package info (click to toggle)
fbasics 200.10058-1
  • links: PTS
  • area: main
  • in suites: sarge
  • size: 3,644 kB
  • ctags: 189
  • sloc: fortran: 1,709; ansic: 116; sh: 29; makefile: 12
file content (203 lines) | stat: -rw-r--r-- 5,221 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
\name{BasicStatistics}

\alias{BasicStatistics}

\alias{basicStats}

\alias{skewness}
\alias{skewness.default}
\alias{skewness.data.frame}
\alias{skewness.POSIXct}
\alias{skewness.POSIXlt}

\alias{kurtosis}
\alias{kurtosis.default}
\alias{kurtosis.data.frame}
\alias{kurtosis.POSIXct}
\alias{kurtosis.POSIXlt}

\alias{rowStats} 
\alias{rowAvgs}
\alias{rowVars}
\alias{rowStdevs}
\alias{rowSkewness}
\alias{rowKurtosis}
\alias{rowCumsums}

\alias{colStats} 
\alias{colAvgs}
\alias{colVars}
\alias{colStdevs}
\alias{colSkewness}
\alias{colKurtosis}
\alias{colCumsums}

\title{Basic Statistics Summary}


\description{

    A collection and description of functions which compute 
    basic statistical properties. Missing functions in R to 
    calculate skewness and kurtosis are added, a function 
    which creates a summary statistics, and functions to 
    calculate column statistics.
    \cr
    
    The functions are:
    
    \tabular{ll}{
    \code{skewness} \tab returns value of skewness, \cr
    \code{kurtosis} \tab returns value of kurtosis, \cr 
    \code{basicStats} \tab computes an overview of basic statistical values, \cr    
    \code{rowStats}\tab calculates row statistics, \cr
    \code{colStats} \tab calculates column statistics, \cr
    \code{rowAvgs} \tab calculates row means, \cr
    \code{colAvgs} \tab calculates column means, \cr
    \code{rowVars} \tab calculates row variances, \cr
    \code{colVars} \tab calculates column variances, \cr
    \code{rowStdevs} \tab calculates row standard deviations, \cr
    \code{colStdevs} \tab calculates column standard deviations, \cr
    \code{rowSkewness} \tab calculates row skewness, \cr
    \code{colSkewness} \tab calculates column skewness, \cr
    \code{rowKurtosis} \tab calculates row kurtosis, \cr
    \code{colKurtosis} \tab calculates column kurtosis, \cr
    \code{rowCumsums} \tab calculates row cumulated Sums, \cr
    \code{colCumsums} \tab calculates column cumulated Sums. }
    
}


\usage{
skewness(x, \dots)
\method{skewness}{default}(x, na.rm = FALSE, \dots)
\method{skewness}{data.frame}(x, \dots)
\method{skewness}{POSIXct}(x, \dots)
\method{skewness}{POSIXlt}(x, \dots)

kurtosis(x, \dots)
\method{kurtosis}{default}(x, na.rm = FALSE, \dots)
\method{kurtosis}{data.frame}(x, \dots)
\method{kurtosis}{POSIXct}(x, \dots)
\method{kurtosis}{POSIXlt}(x, \dots)

basicStats(x, ci = 0.95)

rowStats(x, FUN, na.rm = FALSE, \dots) 
rowAvgs(x, na.rm = FALSE, \dots)
rowVars(x, na.rm = FALSE, \dots)
rowStdevs(x, na.rm = FALSE, \dots)
rowSkewness(x, na.rm = FALSE, \dots)
rowKurtosis(x, na.rm = FALSE, \dots)
rowCumsums(x, na.rm = FALSE, \dots)

colStats(x, FUN, na.rm = FALSE, \dots) 
colAvgs(x, na.rm = FALSE, \dots)
colVars(x, na.rm = FALSE, \dots)
colStdevs(x, na.rm = FALSE, \dots)
colSkewness(x, na.rm = FALSE, \dots)
colKurtosis(x, na.rm = FALSE, \dots)
colCumsums(x, na.rm = FALSE, \dots)
}


\arguments{
  
    \item{ci}{
        confidence interval, a numeric value, by default 0.95, 
        i.e. 95 percent.
        }
    \item{FUN}{
        the statistical function to be applied.
        }
        \item{na.rm}{
        a logical. Should missing values be removed?
        }
    \item{x}{
        a numeric vector, or a matrix for column statistics.
        }
    \item{\dots}{
        arguments to be passed.
        }
        
}


\value{
    
    \code{skewness}, \code{kurtosis}
    \cr
    returns the value of the statistics, a numeric value.
    \cr
    
    \code{basicsStats}
    \cr
    returns data frame with the following entries and row names:
    nobs, NAs, Minimum, Maximum , 1. Quartile, 3. Quartile,
    Mean, Median, Sum, SE Mean, LCL Mean, UCL Mean, Variance,
    Stdev, Skewness, Kurtosis.
    \cr
    
    \code{rowStats}, \code{rowAvgs}, \code{rowVars}, \code{rowStdevs},\cr
    \code{rowSkewness}, \code{rowKurtosis}, \code{rowCumsum}
    \cr 
    computes sample statistics by column. Missing values can be
    handled.
    \cr
    
    \code{colStats}, \code{colAvgs}, \code{colVars}, \code{colStdevs},\cr
    \code{colSkewness}, \code{colKurtosis}, \code{colCumsum}
    \cr 
    computes sample statistics by column. Missing values can be
    handled. 
    
}


\note{

    \R's-base package contains a function \code{colMeans} with an
    additional argument \code{dim=1}. Therefore, the function used 
    here to compute column means (averages) is named \code{colAvgs}.
    
}


\author{

    Diethelm Wuertz for the Rmetrics \R-port.
    
}


\seealso{

    \code{\link{colMeans}},
    \code{\link{mean}},
    \code{\link{median}},
    \code{\link{var}}.
    
}


\examples{
## basicStats -
   xmpBasics("\nStart: Basic Statistics of log-Returns > ")
   # Data NYSE Composite Index:
   data(nyseres)
   basicStats(nyseres)  
     
## moments -
   xmpBasics("\nNext: Moments, Skewness and Kurtosis > ")
   # Mean, Variance:
   mean(nyseres)
   var(nyseres)
   # Skewness, Kurtosis:
   # Note, can handele data.frames:
   skewness(nyseres)
   kurtosis(nyseres)   
}


\keyword{univar}