1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440
|
C
C Summary:
C
C SYMSTB
C Fortran program to compute a fast numerical approximation to the Symmetric
C Stable distribution and density functions.
C (Hu McCulloch, mcculloch.2@osu.edu)
C
C Submission:
C SYMSTB (VS FORTRAN)
C Numerical Approximation to Symmetric Stable Distribution and Density.
C Posted by: J. Huston McCulloch
C Economics Dept.
C Ohio State Univ.
C 1945 N. High St.
C Columbus, OH 43210
C (614) 292-0382
C mcculloch.2@osu.edu
C The code may be freely used for non-commercial purposes and freely copied
C and distributed. The computation is described in
C J. Huston McCulloch, "Numerical Approximation of the Symmetric Stable
C Distributions and Densities," Ohio State Univ. Economics Dept., Oct. 1994,
C which is available from the author on request. Any research use
C of this code should cite this working paper. Contact the author for
C assistance.
C
C Accuracy:
C The expected relative density precision is 1.0e-6 for alpha in the
C range [.84, 2.00]. The programs have considerably reduced precision for
C alpha < .84, although no error message is given for lower alpha
C values. The absolute precision of the density is 6.6e-5
C for alpha in the range [..92, 2.00], while that of the distribution is
C 2.2e-5 in the same range. See paper for details.
C
C Speed:
C Changing alpha induces set-up calculations, so submit as many x values
C as you can before changing alpha. Only the commands from 20 down are
C are executed if alpha is unchanged from the previous call. The GAUSS
C version of this program takes as little as 33 microseconds to compute
C the density (only) on a P5/100.
C
C Compatibility:
C DERFC is a built-in VS FORTRAN function that computes the complemented
C error function, which is related to the cumulative normal distribution.
C If your FORTRAN does not have this, but instead has a complemented
C cumulative normal distribution function named (eg) NCDFC, command #1
C may be replaced by
C 1 GFUN(X) = NCDFC(X/SQRT(2))
C
C A GAUSS version of this routine is archived at
C gopher.american.edu/academic.depts/cas/econ/software/gauss
C
C FORTRAN code follows:
C
C
C ******************************************************************************
C
SUBROUTINE SYMSTB(XX,YY,ZZ,NN,ALPHA)
IMPLICIT REAL*8 (A-H,O-Z)
DIMENSION XX(NN),YY(NN),ZZ(NN)
DIMENSION EI(3),U(3),S(4,19),R(19),Q(0:5),P(0:5,0:19)
DIMENSION PD(0:4,0:19),ALF2I(4)
DIMENSION ZNOT(19),ZN4(19),ZN5(19),COMBO(0:5),ZJI(19,0:5)
DATA COMBO/1.0D0,5.0D0,10.0D0,10.0D0,5.0D0,1.0D0/
C
DATA ((S(I, J), I = 1, 4), J = 1, 7) /
1 1.85141 90959 D2, -4.67693 32663 D2,
1 4.84247 20302 D2, -1.76391 53404 D2,
1 -3.02365 52164 D2, 7.63519 31975 D2,
1 -7.85603 42101 D2, 2.84263 13374 D2,
1 4.40789 23600 D2, -1.11811 38121 D3,
1 1.15483 11335 D3, -4.19696 66223 D2,
1 -5.24481 42165 D2, 1.32244 87717 D3,
1 -1.35556 48053 D3, 4.88340 79950 D2,
1 5.35304 35018 D2, -1.33745 70340 D3,
1 1.36601 40118 D3, -4.92860 99583 D2,
1 -4.89889 57866 D2, 1.20914 18165 D3,
1 -1.22858 72257 D3, 4.40631 74114 D2,
1 3.29055 28742 D2, -7.32117 67697 D2,
1 6.81836 41829 D2, -2.28242 91084 D2 /
DATA ((S(I, J), I = 1, 4), J = 8,14) /
1 -2.14954 02244 D2, 3.96949 06604 D2,
1 -3.36957 10692 D2, 1.09058 55709 D2,
1 2.11125 81866 D2, -2.79211 07017 D2,
1 1.17179 66020 D2, 3.43946 64342 D0,
1 -2.64867 98043 D2, 1.19990 93707 D2,
1 2.10448 41328 D2, -1.51108 81541 D2,
1 9.41057 84123 D2, -1.72219 88478 D3,
1 1.40875 44698 D3, -4.24725 11892 D2,
1 -2.19904 75933 D3, 4.26377 20422 D3,
1 -3.47239 81786 D3, 1.01743 73627 D3,
1 3.10474 90290 D3, -5.42042 10990 D3,
1 4.22210 52925 D3, -1.23459 71177 D3,
1 -5.14082 60668 D3, 1.10902 64364 D4,
1 -1.02703 37246 D4, 3.42434 49595 D3 /
DATA ((S(I, J), I = 1, 4), J = 15, 19) /
1 1.12151 57876 D4, -2.42435 29825 D4,
1 2.15360 57267 D4, -6.84909 96103 D3,
1 -1.81206 31586 D4, 3.14301 32257 D4,
1 -2.41642 85641 D4, 6.91268 62826 D3,
1 1.73884 13126 D4, -2.21083 97686 D4,
1 1.33979 99271 D4, -3.12466 11987 D3,
1 -7.24357 75303 D3, 4.35453 99418 D3,
1 2.36161 55949 D2, -7.65716 53073 D2,
1 -8.73767 25439 D3, 1.55108 52129 D4,
1 -1.37897 64138 D4, 4.63874 17712 D3 /
C
PI=3.141592653589793D0
CA=DGAMMA(ALPHA)*DSIN(PI*ALPHA/2.0D0)/PI
SQPI=DSQRT(PI)
A2=DSQRT(2.0D0)-1.0D0
CPXP0=1.0D0/PI
GPXP0=1.0D0/(4.0D0*A2*SQPI)
CPXPP0=CPXP0*2.0D0
GPXPP0=GPXP0*1.5D0
CPPP=CPXPP0*3.0D0-2.0D0/PI
GPPP=GPXPP0*2.5D0-1.0D0/(32.0D0*SQPI*A2**3)
DO J=1,19
ZNOT(J)=J*0.05D0
ZN4(J)=(1-ZNOT(J))**4
ZN5(J)=(1-ZNOT(J))*ZN4(J)
DO I=0,5
ZJI(J,I)=COMBO(I)*(-ZNOT(J))**(5-I)
ENDDO
ENDDO
DO I=1,3
EI(I)=I
U(I)=1
ENDDO
Q(0)=0.0D0
A=2.0D0**(1.0D0/ALPHA)-1.0D0
ALA=ALPHA*A
ALF2=2.0D0-ALPHA
ALF1=ALPHA-1.0D0
PIALF=PI*ALPHA
SP0=DGAMMA(1.0D0/ALPHA)/PIALF
SPPP0=-DGAMMA(3.0D0/ALPHA)/PIALF
XP0=1.0D0/(ALA)
XPP0=XP0*(1.0D0+ALPHA)/ALPHA
XPPP0=XPP0*(1.0D0+2.0D0*ALPHA)/ALPHA
SPZP1=(A**ALPHA)*DGAMMA(ALPHA)*DSIN(PIALF/2.0D0)/PI
RP0=-SP0*XP0+ALF2*CPXP0+ALF1*GPXP0
RPP0=-SP0*XPP0+ALF2*CPXPP0+ALF1*GPXPP0
RPPP0=-SP0*XPPP0-SPPP0*XP0**3+ALF2*CPPP+ALF1*GPPP
RP1=-SPZP1+ALF2/PI
DO I=1,4
ALF2I(I)=ALF2**I-1.0D0
ENDDO
DO J=1,19
R(J)=ALF2*(ALF2I(1)*S(1,J)+ALF2I(2)*S(2,J)
& +ALF2I(3)*S(3,J)+ALF2I(4)*S(4,J))
ENDDO
Q(1)=RP0
Q(2)=RPP0/2.0D0
Q(3)=RPPP0/6.0D0
B=-(U(1)+U(2)+U(3))*Q(1)
DO IP=1,19
B=B-R(IP)*ZN5(IP)
ENDDO
C=RP1-(EI(1)+EI(2)+EI(3))*Q(1)
DO IP=1,19
C=C-5.0D0*R(IP)*ZN4(IP)
ENDDO
Q(4)=5.0D0*B-C
Q(5)=B-Q(4)
DO I=0,5
P(I,0)=Q(I)
DO J=1,19
PRD=0.0D0
DO IP=1,J
PRD=PRD+R(IP)
ENDDO
P(I,J)=Q(I)+PRD*ZJI(1,I)
ENDDO
ENDDO
DO I=1,5
DO J=0,19
PD(I-1,J)=I*P(I,J)
ENDDO
ENDDO
C LOOP OVER ALL DATAPOINTS:
DO II=1,NN
X=XX(II)
XA1=1.0D0+A*DABS(X)
XA1A=XA1**(-ALPHA)
Z=1.0D0-XA1A
ZP=ALA*XA1A/XA1
X1=((1.0D0-Z)**(-1.0D0)-1.0D0)
X2=((1.0D0-Z)**(-0.5D0)-1.0D0)/A2
X1P=1.0D0/((1.0D0+X1)**(-2.0D0))
X2P=1.0D0/(2.0D0*A2*(1.0D0+A2*X2)**(-3.0D0))
J=20*Z
IF (J.GT.19) J=19
RZ=P(0,J)
DO IP=4,0,-1
RZ=RZ*Z+P(0,J)
ENDDO
RPZ=PD(0,J)
DO IP=3,0,-1
RPZ=RPZ*Z+PD(0,J)
ENDDO
C
C *** CUMULATED PROBABILITY FUNCTION:
CFUN=0.5D0-DATAN(X1)/PI
GFUN=0.5D0*DERFC2(X2/2.0D0)
PROBFUN=ALF2*CFUN+ALF1*GFUN+RZ
IF(X.LT.0.0D0) PROBFUN=1.0D0-PROBFUN
YY(II)=1.0D0-PROBFUN
IF (YY(II).LT.10*2.2D-5) THEN
YY(II)=CA*DABS(X)**(-ALPHA)
ENDIF
C
C *** PROBABILITY DENSITY FUNCTION:
CDEN=1.0D0/(PI*(1.0D0+X1*X1))
GDEN=DEXP(-x2*X2/4.0D0)/(2.0D0*SQPI)
PROBDEN=(ALF2*CDEN*X1P+ALF1*GDEN*X2P-RPZ)*ZP
ZZ(II)=PROBDEN
IF (ZZ(II).LT.10*6.6D-5) THEN
ZZ(II)=ALPHA*CA*DABS(X)**(-ALPHA-1.0D0)
ENDIF
C
C END OF X(NN) LOOP:
ENDDO
RETURN
END
C
C ******************************************************************************
C
DOUBLE PRECISION FUNCTION DERFC2(X)
INTEGER JINT
DOUBLE PRECISION X, RESULT
JINT = 1
CALL CALERF(X,RESULT,JINT)
DERFC2 = RESULT
RETURN
END
C
SUBROUTINE CALERF(ARG,RESULT,JINT)
INTEGER I,JINT
DOUBLE PRECISION
1 A,ARG,B,C,D,DEL,FOUR,HALF,P,ONE,Q,RESULT,SIXTEN,SQRPI,
2 TWO,THRESH,X,XBIG,XDEN,XHUGE,XINF,XMAX,XNEG,XNUM,XSMALL,
3 Y,YSQ,ZERO
DIMENSION A(5),B(4),C(9),D(8),P(6),Q(5)
DATA FOUR,ONE,HALF,TWO,ZERO/4.0D0,1.0D0,0.5D0,2.0D0,0.0D0/,
1 SQRPI/5.6418958354775628695D-1/,THRESH/0.46875D0/,
2 SIXTEN/16.0D0/
DATA XINF,XNEG,XSMALL/1.79D308,-26.628D0,1.11D-16/,
1 XBIG,XHUGE,XMAX/26.543D0,6.71D7,2.53D307/
DATA A/3.16112374387056560D00,1.13864154151050156D02,
1 3.77485237685302021D02,3.20937758913846947D03,
2 1.85777706184603153D-1/
DATA B/2.36012909523441209D01,2.44024637934444173D02,
1 1.28261652607737228D03,2.84423683343917062D03/
DATA C/5.64188496988670089D-1,8.88314979438837594D0,
1 6.61191906371416295D01,2.98635138197400131D02,
2 8.81952221241769090D02,1.71204761263407058D03,
3 2.05107837782607147D03,1.23033935479799725D03,
4 2.15311535474403846D-8/
DATA D/1.57449261107098347D01,1.17693950891312499D02,
1 5.37181101862009858D02,1.62138957456669019D03,
2 3.29079923573345963D03,4.36261909014324716D03,
3 3.43936767414372164D03,1.23033935480374942D03/
DATA P/3.05326634961232344D-1,3.60344899949804439D-1,
1 1.25781726111229246D-1,1.60837851487422766D-2,
2 6.58749161529837803D-4,1.63153871373020978D-2/
DATA Q/2.56852019228982242D00,1.87295284992346047D00,
1 5.27905102951428412D-1,6.05183413124413191D-2,
2 2.33520497626869185D-3/
X = ARG
Y = DABS(X)
IF (Y .LE. THRESH) THEN
YSQ = ZERO
IF (Y .GT. XSMALL) YSQ = Y * Y
XNUM = A(5)*YSQ
XDEN = YSQ
DO 20 I = 1, 3
XNUM = (XNUM + A(I)) * YSQ
XDEN = (XDEN + B(I)) * YSQ
20 CONTINUE
RESULT = X * (XNUM + A(4)) / (XDEN + B(4))
IF (JINT .NE. 0) RESULT = ONE - RESULT
IF (JINT .EQ. 2) RESULT = DEXP(YSQ) * RESULT
GO TO 800
ELSE IF (Y .LE. FOUR) THEN
XNUM = C(9)*Y
XDEN = Y
DO 120 I = 1, 7
XNUM = (XNUM + C(I)) * Y
XDEN = (XDEN + D(I)) * Y
120 CONTINUE
RESULT = (XNUM + C(8)) / (XDEN + D(8))
IF (JINT .NE. 2) THEN
YSQ = DINT(Y*SIXTEN)/SIXTEN
DEL = (Y-YSQ)*(Y+YSQ)
RESULT = DEXP(-YSQ*YSQ) * DEXP(-DEL) * RESULT
END IF
ELSE
RESULT = ZERO
IF (Y .GE. XBIG) THEN
IF ((JINT .NE. 2) .OR. (Y .GE. XMAX)) GO TO 300
IF (Y .GE. XHUGE) THEN
RESULT = SQRPI / Y
GO TO 300
END IF
END IF
YSQ = ONE / (Y * Y)
XNUM = P(6)*YSQ
XDEN = YSQ
DO 240 I = 1, 4
XNUM = (XNUM + P(I)) * YSQ
XDEN = (XDEN + Q(I)) * YSQ
240 CONTINUE
RESULT = YSQ *(XNUM + P(5)) / (XDEN + Q(5))
RESULT = (SQRPI - RESULT) / Y
IF (JINT .NE. 2) THEN
YSQ = DINT(Y*SIXTEN)/SIXTEN
DEL = (Y-YSQ)*(Y+YSQ)
RESULT = DEXP(-YSQ*YSQ) * DEXP(-DEL) * RESULT
END IF
END IF
300 IF (JINT .EQ. 0) THEN
RESULT = (HALF - RESULT) + HALF
IF (X .LT. ZERO) RESULT = -RESULT
ELSE IF (JINT .EQ. 1) THEN
IF (X .LT. ZERO) RESULT = TWO - RESULT
ELSE
IF (X .LT. ZERO) THEN
IF (X .LT. XNEG) THEN
RESULT = XINF
ELSE
YSQ = DINT(X*SIXTEN)/SIXTEN
DEL = (X-YSQ)*(X+YSQ)
Y = DEXP(YSQ*YSQ) * DEXP(DEL)
RESULT = (Y+Y) - RESULT
END IF
END IF
END IF
800 RETURN
END
C
C*******************************************************************************
C
DOUBLE PRECISION FUNCTION DGAMMA(X)
INTEGER I,N
LOGICAL PARITY
DOUBLE PRECISION
1 C,CONV,EPS,FACT,HALF,ONE,P,PI,Q,RES,SQRTPI,SUM,TWELVE,
2 TWO,X,XBIG,XDEN,XINF,XMININ,XNUM,Y,Y1,YSQ,Z,ZERO
DIMENSION C(7),P(8),Q(8)
DATA ONE,HALF,TWELVE,TWO,ZERO/1.0D0,0.5D0,12.0D0,2.0D0,0.0D0/,
1 SQRTPI/0.9189385332046727417803297D0/,
2 PI/3.1415926535897932384626434D0/
DATA XBIG,XMININ,EPS/171.624D0,2.23D-308,2.22D-16/,
1 XINF/1.79D308/
DATA P/-1.71618513886549492533811D+0,2.47656508055759199108314D+1,
1 -3.79804256470945635097577D+2,6.29331155312818442661052D+2,
2 8.66966202790413211295064D+2,-3.14512729688483675254357D+4,
3 -3.61444134186911729807069D+4,6.64561438202405440627855D+4/
DATA Q/-3.08402300119738975254353D+1,3.15350626979604161529144D+2,
1 -1.01515636749021914166146D+3,-3.10777167157231109440444D+3,
2 2.25381184209801510330112D+4,4.75584627752788110767815D+3,
3 -1.34659959864969306392456D+5,-1.15132259675553483497211D+5/
DATA C/-1.910444077728D-03,8.4171387781295D-04,
1 -5.952379913043012D-04,7.93650793500350248D-04,
2 -2.777777777777681622553D-03,8.333333333333333331554247D-02,
3 5.7083835261D-03/
CONV(I) = DBLE(I)
PARITY = .FALSE.
FACT = ONE
N = 0
Y = X
IF (Y .LE. ZERO) THEN
Y = -X
Y1 = DINT(Y)
RES = Y - Y1
IF (RES .NE. ZERO) THEN
IF (Y1 .NE. DINT(Y1*HALF)*TWO) PARITY = .TRUE.
FACT = -PI / DSIN(PI*RES)
Y = Y + ONE
ELSE
RES = XINF
GO TO 900
END IF
END IF
IF (Y .LT. EPS) THEN
IF (Y .GE. XMININ) THEN
RES = ONE / Y
ELSE
RES = XINF
GO TO 900
END IF
ELSE IF (Y .LT. TWELVE) THEN
Y1 = Y
IF (Y .LT. ONE) THEN
Z = Y
Y = Y + ONE
ELSE
N = INT(Y) - 1
Y = Y - CONV(N)
Z = Y - ONE
END IF
XNUM = ZERO
XDEN = ONE
DO 260 I = 1, 8
XNUM = (XNUM + P(I)) * Z
XDEN = XDEN * Z + Q(I)
260 CONTINUE
RES = XNUM / XDEN + ONE
IF (Y1 .LT. Y) THEN
RES = RES / Y1
ELSE IF (Y1 .GT. Y) THEN
DO 290 I = 1, N
RES = RES * Y
Y = Y + ONE
290 CONTINUE
END IF
ELSE
IF (Y .LE. XBIG) THEN
YSQ = Y * Y
SUM = C(7)
DO 350 I = 1, 6
SUM = SUM / YSQ + C(I)
350 CONTINUE
SUM = SUM/Y - Y + SQRTPI
SUM = SUM + (Y-HALF)*LOG(Y)
RES = DEXP(SUM)
ELSE
RES = XINF
GO TO 900
END IF
END IF
IF (PARITY) RES = -RES
IF (FACT .NE. ONE) RES = FACT / RES
900 DGAMMA = RES
RETURN
END
C
C ******************************************************************************
C
|