1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
# Copyrights (C)
# for this R-port:
# 1999 - 2006, Diethelm Wuertz, GPL
# Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
# info@rmetrics.org
# www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
# see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
# see Rmetrics's copyright file
################################################################################
# FUNCTION: NORMALITY TESTS:
# 'fHTEST' S4 Class Representation
# show.fHTEST S4 Print Method
# FUNCTION: DESCRIPTION:
# jbTable Finite sample p values for the Jarque Bera test
# FUNCTION: PVALUE AND STATISTICS TABLES:
# pPlot Displays a general finite sample probability plot
# pTable Interpolates probabilities from a finite sample table
# .pTable Utility function called by the function 'pTable'
# qTable Interpolates quantiles from a finite sample table
# .qTable Utility function called by the function 'qTable'
# FUNCTION: INTERNAL FUNCTIONS:
# .interpTable.old Akima spline interpolation utility function
# .interpTable.new Akima spline interpolation utility function
################################################################################
setClass("fHTEST",
representation(
call = "call",
data = "list",
test = "list",
title = "character",
description = "character")
)
# ------------------------------------------------------------------------------
show.fHTEST =
function(object)
{ # A function implemented by Diethelm Wuertz
# Source:
# This function copies code from base:print.htest
# Changes:
#
# FUNCTION:
# Unlike print the argument for show is 'object'.
x = object
# Title:
cat("\nTitle:\n ", x@title, "\n", sep = "")
# Call:
# cat("\nCall:\n", deparse(x@call), "\n", sep = "")
# Data Name:
# cat("\nData Name:\n", ans@data.name, "\n", sep = "")
# Test Results:
test = x@test
cat("\nTest Results:\n", sep = "")
# Tests from tseries package:
# Parameter:
if (!is.null(test$parameter)) {
parameter = test$parameter
Names = names(parameter)
cat(" PARAMETER:\n")
for ( i in 1: length(Names) )
cat(paste(" ", names(parameter[i]), ": ",
format(round(parameter[i], 3)), "\n", sep = "") )
}
# Sample Estimates:
if (!is.null(test$estimate)) {
estimate = test$estimate
Names = names(estimate)
cat(" SAMPLE ESTIMATES:\n")
for (i in 1:length(Names)) {
cat(paste(" ", Names[i], ": ",
round(estimate[i], digits = 4), "\n", sep = "" ) )
}
}
# Statistic:
if (!is.null(test$statistic)) {
statistic = test$statistic
Names = names(statistic)
cat(" STATISTIC:\n")
for (i in 1:length(Names)) {
if (!is.na(statistic[i])) {
cat(paste(" ", Names[i], ": ",
round(statistic[i], digits = 4), "\n", sep = "" ) )
}
}
}
# P-Value:
if (!is.null(test$p.value)) {
pval = test$p.value
Names = names(pval)
if (Names[1] == "") space = "" else space = ": "
cat(" P VALUE:\n")
for (i in 1:length(Names)) {
if (!is.na(pval[i])) {
if (class(version) != "Sversion") {
cat(paste(" ", Names[i], space,
format.pval(pval[i], digits = 4), " \n", sep = "" ) )
} else {
cat(paste(" ", Names[i], space,
round(pval[i], digits = 4), " \n", sep = "" ) )
}
}
}
}
# Confidence Interval:
if (!is.null(test$conf.int)) {
conf = test$conf.int
# For SPlus compatibility use dimnames istead of colnames!
colNames = dimnames(conf)[[2]]
cat(" CONFIDENCE INTERVAL:\n")
for (i in 1:length(colNames)) {
cat(paste(" ", colNames[i], ": ",
round(conf[1, i], digits = 4), ", ",
round(conf[2, i], digits = 4), "\n", sep = "" ) )
}
}
# More Specific Output Results:
if (!is.null(test$output)) {
cat(test$output, fill = FALSE, sep = "\n")
}
# Description:
cat("\nDescription:\n ", x@description, sep = "")
cat("\n\n")
# Return Value:
invisible()
}
# ------------------------------------------------------------------------------
setMethod("show", "fHTEST", show.fHTEST)
################################################################################
# jbTable Finite sample p values for the Jarque Bera test
jbTable =
function(type = c("LM", "ALM"), size = c("all", "small"))
{ # A function implemented by Diethelm Wuertz
# Description:
# Finite sample p values for the Jarque Bera test
# Changes:
#
# FUNCTION:
# Create Table:
if (type[1] == "LM") {
table = .jbLM
} else if (type[1] == "ALM") {
table = .jbALM
}
# Downsize Data:
if (size[1] == "small") {
n = dim(table)[1]
table = table[c(matrix(1:(n-2), byrow = TRUE, ncol = 22)[, 1], n), ]
table = table[-(1:17),]
}
# Return Value:
table
}
################################################################################
# pPlot General finite sample probability plot
# pTable Interpolated probabilities from finite sample table
# .pTable Utility function called by the function 'pTable'
# qTable Interpolated quantiles from finite sample table
# .qTable Utility function called by the function 'qTable'
pPlot =
function(X, nN = 100, nStat = 100, logN = TRUE, logStat = FALSE,
fill = FALSE, linear = TRUE, digits = 8, doplot = TRUE, ...)
{ # A function implemented by Diethelm Wuertz
# Description:
# General finite sample probability plot
# Details:
# This function creates from regularly spaced data 'Statistic(p,N)'
# a new regularly spaced data array 'p(Statistic,N)' using Akima's
# spline interpolation.
# Optionally a perspective plot will be created.
# Arguments:
# X - a data frame or table with q values for given sizes 'N'
# and probabilities 'p'. The colnames must contain the
# size values and row names must contain the p values.
# nN - the number of points to be interpolated for the 'size'
# nStat - the number of points to be interpolated for the 'Statistic'
# logN - should a logical scale be used for the 'size' values?
# logStat - should a logical scale be used for the 'Statistic' values?
# fill - should be NA's filled with asymptotic values zero and one?
# By default no.
# digits - the number of digits used for the output. By default 8
# doplot - should a plot be created? By default yes.
# Note:
# For large arrays 'X' this function will take some time to run.
# Please, be patient.
# Examples:
# pPlot(X = adfTable(), main = "const ADF")
# pPlot(X = adfTable(), fill = TRUE, main = "const ADF")
# FUNCTION:
# Akima Interpolation:
# require(akima)
X = as.matrix(X)
# Settings:
N = as.integer(colnames(X))
p = as.numeric(rownames(X))
N[1] = 1.0001*N[1]
N[length(N)] = 0.9999*N[length(N)]
# Create from Matrix X Vector Data:
x.vec = rep(N, times = length(p)) # N Values
y.vec = as.vector(t(X)) # Statistic
z.vec = rep(p, each = length(N)) # p Value
# Generate Sampling Points - N/Statistic Values:
if (logN) {
xo = log10(10^seq(log10(1.01*min(x.vec)), log10(0.99*max(x.vec)),
length = nN))
x.vec = log10(x.vec)
} else {
xo = seq(1.01*min(x.vec), 0.99*max(x.vec), length = nN)
}
xo = round(xo, digits = digits)
if (logStat) {
yo = log10(10^seq(log10(1.01*min(y.vec)), log10(0.99*max(y.vec)),
length = nStat))
y.vec = log10(y.vec)
} else {
yo = seq(1.01*min(y.vec), 0.99*max(y.vec), length = nStat)
}
yo = round(yo, digits = digits)
# Interpolation on Grid:
# 'interp.new' ignores ncp and does only bicubic spline interpolation.
if (linear) {
ans = .interpTable.old(x = x.vec, y = y.vec, z = z.vec, xo = xo,
yo = yo, ncp = 0, extrap = FALSE, duplicate = "median")
} else {
# There is a bug in interp.new ...
ans = .interpTable.new(x = x.vec, y = y.vec, z = z.vec, xo = xo,
yo = yo, linear = FALSE, extrap = FALSE, duplicate = "median")
}
zo = as.matrix(ans$z)
# Fill and Correct Asymptotic Values:
if (fill) {
m1 = trunc(0.50*nStat)
for (i in 1:nN) {
for (j in 1:m1) if (is.na(zo[i, j])) zo[i, j] = 0
for (j in m1:nStat) if (is.na(zo[i, j])) zo[i, j] = 1
# Cut values larger than 1 and smaller than 0:
for (j in 1:nStat) if (zo[i, j] > 1) zo[i, j] = 1
for (j in 1:nStat) if (zo[i, j] < 0) zo[i, j] = 0
}
}
# Add Column and Row Names:
rownames(zo) = as.character(xo)
colnames(zo) = as.character(yo)
ans = list(x = xo, y = yo, z = round(zo, digits))
attr(ans, "params") = unlist(list( nN = nN, nStat = nStat,
logN = logN, logStat = logStat, fill = fill, digits = digits ))
# Plot:
if (doplot) {
if (logN) logN.lab = "log10" else logN.lab = ""
if (logStat) logStat.lab = "log10" else logStat.lab = ""
persp(ans, theta = 40, phi = 30, xlab = paste(logN.lab, "N"),
ylab = paste(logStat.lab, "Statistic"), zlab = "p Value",
ticktype = "detailed", col = "grey", shade = 0.5, ...)
}
# Return Value:
invisible(ans)
}
# ------------------------------------------------------------------------------
qTable =
function(X, p, N, digits = 4)
{ # A function implemented by Diethelm Wuertz
# Description:
# Interpolated quantiles from finite sample table.
# Arguments:
# X - a data frame or matrix with q values for given sizes 'N'
# and probabilities 'p'. The colnames must contain the
# size values and row names must contain the p values.
# p - a vector or numeric p value to be interpolated.
# N - an integer size value to be interpolated.
# digits - the number of digits used for the output.
# Value:
# Interpolated quantiles for size N and p values p.
# Examples:
# plot(qTable(X = adfcTable(), p = (1:99)/100, N = 100), type = "l")
# qTable(X = adfcTable(), p = 0.075, N = 175, digits = 2)
# qTable(jblmTable(), N = 100, p = (1:99)/100, lower.tail = FALSE)
# Changes:
#
# FUNCTION:
# Check:
if (length(N) != 1) stop("N must be of length 1")
# Iterate:
q = NULL
for ( P in p )
q = c(q, .qTable(X, P, N, digits))
# Return Value
q
}
# ------------------------------------------------------------------------------
.qTable =
function(X, p, N, digits = 4)
{ # A function implemented by Diethelm Wuertz
# Description:
# Utility function called by the function 'qTable'
# Arguments:
# X - a data frame or matrix with q values for given sizes 'N'
# and probabilities 'p'. The colnames must contain the
# size values and row names must contain the p values.
# p - a numeric p value to be interpolated.
# N - an integer size value to be interpolated.
# digits - the number of digits used for the output.
# Changes:
#
# FUNCTION:
# Positions:
z = as.matrix(X)
x = Ps = as.numeric(rownames(X))
if (p > max(Ps)) return(NA)
if (p < min(Ps)) return(NA)
y = Ns = as.numeric(colnames(X))
if (N > max(Ns)) return(NA)
if (N < min(Ns)) return(NA)
w = which(Ps == p)
if ( length(w) == 0 ) {
xo = p
yo = N
nx = length(x[x < xo])
ny = length(y[y < yo])
p = (xo - x[nx] ) / ( x[nx+1] - x[nx] )
q = (yo - y[ny] ) / ( y[ny+1] - y[ny] )
# Value:
zo = (1-p)*(1-q)*z[nx, ny] + p*(1-q)*z[nx+1, ny] +
q*(1-p)*z[nx, ny+1] + p*q*z[nx+1,ny+1]
if (length(zo) == 0) zo = NA
} else {
# Value:
zo = approx(x = Ns, y = z[w, ], xout = N)$y
}
# Return Value:
round(zo, digits)
}
# ------------------------------------------------------------------------------
pTable =
function(X, Stat, N, digits = 4)
{ # A function implemented by Diethelm Wuertz
# Description:
# Interpolated probabilities from finite sample table
# Arguments:
# X - a data frame or matrix with q values for given sizes 'N'
# and statistic 'Stat'. The column names must contain the
# size values and the row names must contain the p values.
# Stat - a vector or numeric quantile value to be interpolated.
# N - an integer size value to be interpolated.
# digits - the number of digits used for the output.
# Examples:
# pTable(X = cADF, N = 100, Stat = -2.89)
# pTable(X = jbLM, N = 100, Stat = 5.43)
# pTable(X = jbLM, N = 1400, Stat = 0.7003)
# Changes:
#
# FUNCTION:
# Check:
if (length(N) != 1) stop("N must be of length 1")
# Iterate:
p = NULL
for ( STAT in Stat )
p = c(p, .pTable(X, STAT, N, digits))
# Return Value
p
}
# ------------------------------------------------------------------------------
.pTable =
function(X, Stat, N, digits = 4)
{ # A function implemented by Diethelm Wuertz
# Description:
# Utility function called by the function 'pTable'
# Arguments:
# X - a data frame or matrix with q values for given sizes 'N'
# and statistic 'Stat'. The column names must contain the
# size values and the row names must contain the p values.
# Stat - a numeric quantile value to be interpolated.
# N - an integer size value to be interpolated.
# digits - the number of digits used for the output.
# Value:
# Interpolated probabilities for size 'N' and quantiles 'Stat'.
# Changes:
#
# FUNCTION:
# Extract a proper part from the table to speed up the execution time:
table = t(as.matrix(X))
tablep = as.numeric(colnames(table))
tableT = as.numeric(rownames(table))
tablen = dim(table)[2]
tableipl = numeric(tablen)
# p's - by Column:
if (N < min(tableT)) {
warning(paste("N must be greater than", min(tableT)))
PVAL = NA
return(PVAL)
}
if (N > max(tableT)) {
warning(paste("N must be smaller than", max(tableT)))
PVAL = NA
return(PVAL)
}
# Interpolate Data:
for (i in (1:tablen))
tableipl[i] = approx(tableT, table[, i], N, rule = 2)$y
PVAL = approx(tableipl, tablep, Stat, rule = 2)$y
# Ckeck Consistency:
if (is.na(approx(tableipl, tablep, Stat, rule = 1)$y)) {
if (PVAL == min(tablep)) {
warning("p-value smaller/greater than printed p-value")
}
else {
warning("p-value greater/smaller than printed p-value")
}
}
# Return Value:
round(PVAL, digits = 4)
}
################################################################################
# .interpTable.old Akima spline interpolation utility function
# .interpTable.new Akima spline interpolation utility function
.interpTable.old =
function (x, y, z, xo = seq(min(x), max(x), length = 40), yo = seq(min(y),
max(y), length = 40), ncp = 0, extrap = FALSE, duplicate = "error",
dupfun = NULL)
{ # A copy from contributed package akima
# Changes:
#
# FUNCTION:
if (!(all(is.finite(x)) && all(is.finite(y)) && all(is.finite(z))))
stop("missing values and Infs not allowed")
drx <- diff(range(x))
dry <- diff(range(y))
if (drx == 0 || dry == 0)
stop("all data collinear")
if (drx/dry > 10000 || drx/dry < 1e-04)
stop("scales of x and y are too dissimilar")
n <- length(x)
nx <- length(xo)
ny <- length(yo)
if (length(y) != n || length(z) != n)
stop("Lengths of x, y, and z do not match")
xy <- paste(x, y, sep = ",")
i <- match(xy, xy)
if (duplicate == "user" && !is.function(dupfun))
stop("duplicate=\"user\" requires dupfun to be set to a function")
if (duplicate != "error") {
centre <- function(x) {
switch(duplicate, mean = mean(x), median = median(x),
user = dupfun(x))
}
if (duplicate != "strip") {
z <- unlist(lapply(split(z, i), centre))
ord <- !duplicated(xy)
x <- x[ord]
y <- y[ord]
n <- length(x)
} else {
ord <- (hist(i, plot = FALSE, freq = TRUE, breaks =
seq(0.5, max(i) + 0.5, 1))$counts == 1)
x <- x[ord]
y <- y[ord]
z <- z[ord]
n <- length(x)
}
} else if (any(duplicated(xy)))
stop("duplicate data points")
zo <- matrix(0, nx, ny)
storage.mode(zo) <- "double"
miss <- !extrap
misso <- matrix(miss, nx, ny)
if (extrap & ncp == 0)
warning("Cannot extrapolate with linear option")
ans <- .Fortran("idsfft", as.integer(1), as.integer(ncp),
as.integer(n), as.double(x), as.double(y), as.double(z),
as.integer(nx), as.integer(ny), x = as.double(xo), y = as.double(yo),
z = zo, integer((31 + ncp) * n + nx * ny), double(5 *
n), misso = as.logical(misso), PACKAGE = "fBasics")
temp <- ans[c("x", "y", "z", "misso")]
temp$z[temp$misso] <- NA
temp[c("x", "y", "z")]
}
# ------------------------------------------------------------------------------
.interpTable.new =
function (x, y, z, xo = seq(min(x), max(x), length = 40), yo = seq(min(y),
max(y), length = 40), linear = FALSE, ncp = NULL, extrap = FALSE,
duplicate = "error", dupfun = NULL)
{ # A copy from contributed package akima
# Changes:
#
# FUNCTION:
if (!(all(is.finite(x)) && all(is.finite(y)) && all(is.finite(z))))
stop("missing values and Infs not allowed")
if (!is.null(ncp)) {
if (ncp != 0) {
cat("ncp not supported, it is automatically choosen by Fortran code\n")
} else {
cat("linear interpolation not yet implemented with interp.new().\n")
stop("use interp.old().")
}
}
if (linear) {
cat("linear interpolation not yet implemented with interp.new().\n")
stop("use interp.old().")
}
drx <- diff(range(x))
dry <- diff(range(y))
if (drx == 0 || dry == 0)
stop("all data collinear")
if (drx/dry > 10000 || drx/dry < 1e-04)
stop("scales of x and y are too dissimilar")
n <- length(x)
nx <- length(xo)
ny <- length(yo)
if (length(y) != n || length(z) != n)
stop("Lengths of x, y, and z do not match")
xy <- paste(x, y, sep = ",")
i <- match(xy, xy)
if (duplicate == "user" && !is.function(dupfun))
stop("duplicate=\"user\" requires dupfun to be set to a function")
if (duplicate != "error") {
centre <- function(x) {
switch(duplicate, mean = mean(x), median = median(x),
user = dupfun(x))
}
if (duplicate != "strip") {
z <- unlist(lapply(split(z, i), centre))
ord <- !duplicated(xy)
x <- x[ord]
y <- y[ord]
n <- length(x)
} else {
ord <- (hist(i, plot = FALSE, freq = TRUE, breaks = seq(0.5,
max(i) + 0.5, 1))$counts == 1)
x <- x[ord]
y <- y[ord]
z <- z[ord]
n <- length(x)
}
} else if (any(duplicated(xy)))
stop("duplicate data points")
zo <- matrix(0, nx, ny)
storage.mode(zo) <- "double"
miss <- !extrap
extrap <- matrix(TRUE, nx, ny)
if (!is.null(ncp)) {
# DW
if (prod(extrap) & ncp == 0)
warning("Cannot extrapolate with linear option")
} else {
# DW
if (prod(extrap) & linear)
warning("Cannot extrapolate with linear option")
}
ans <- .Fortran("sdsf3p", as.integer(1), as.integer(n), as.double(x),
as.double(y), as.double(z), as.integer(nx), x = as.double(xo),
as.integer(ny), y = as.double(yo), z = zo, ier = integer(1),
double(36 * n), integer(25 * n), extrap = as.logical(extrap),
near = integer(n), nxt = integer(n), dist = double(n),
PACKAGE = "fBasics")
temp <- ans[c("x", "y", "z", "extrap")]
if (miss)
temp$z[temp$extrap] <- NA
temp[c("x", "y", "z")]
}
################################################################################
|