1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420
|
\name{OneSampleTests}
\alias{OneSampleTests}
\alias{normalTest}
\alias{ksnormTest}
\alias{shapiroTest}
\alias{jarqueberaTest}
\alias{dagoTest}
\alias{jbTable}
\alias{pjb}
\alias{qjb}
\alias{jbTest}
% from nortest:
\alias{adTest}
\alias{cvmTest}
\alias{lillieTest}
\alias{pchiTest}
\alias{sfTest}
\alias{runsTest}
\title{One Sample Tests}
\description{
A collection and description of functions of one
sample tests for testing normality of for detecting
non-randomness in observations.
\cr
The functions for testing normality are:
\tabular{ll}{
\code{ksnormTest} \tab Kolmogorov-Smirnov normality test, \cr
\code{shapiroTest} \tab Shapiro-Wilk's test for normality, \cr
\code{jarqueberaTest} \tab Jarque--Bera test for normality, \cr
\code{dagoTest} \tab D'Agostino normality test. }
Functions for high precision Jarque Bera LM and ALM tests:
\tabular{ll}{
\code{jbTable} \tab Table of finite sample p values for the JB test, \cr
\code{pjb} \tab Computes probabilities for the Jarque Bera Test, \cr
\code{qjb} \tab Computes quantiles for the Jarque Bera Test, \cr
\code{jbTest} \tab Performs finite sample adjusted JB LM and ALM test. }
Additional functions for testing normality from the 'nortest' package:
\tabular{ll}{
\code{adTest} \tab Anderson--Darling normality test, \cr
\code{cvmTest} \tab Cramer--von Mises normality test, \cr
\code{lillieTest} \tab Lilliefors (Kolmogorov-Smirnov) normality test, \cr
\code{pchiTest} \tab Pearson chi--square normality test, \cr
\code{sfTest} \tab Shapiro--Francia normality test. }
For SPlus/Finmetrics Compatibility:
\tabular{ll}{
\code{normalTest} \tab test suite for some normality tests. }
More tests ...
\tabular{ll}{
\code{runsTest} \tab Runs test for detecting non-randomness.}
}
\usage{
ksnormTest(x, title = NULL, description = NULL)
shapiroTest(x, title = NULL, description = NULL)
jarqueberaTest(x, title = NULL, description = NULL)
dagoTest(x, title = NULL, description = NULL)
jbTable(type = c("LM", "ALM"), size = c("all", "small"))
pjb(q, N = Inf, type = c("LM", "ALM"))
qjb(p, N = Inf, type = c("LM", "ALM"))
jbTest(x, title = NULL, description = NULL)
adTest(x, title = NULL, description = NULL)
cvmTest(x, title = NULL, description = NULL)
lillieTest(x, title = NULL, description = NULL)
pchiTest(x, title = NULL, description = NULL)
sfTest(x, title = NULL, description = NULL)
normalTest(x, method = c("sw", "jb"), na.rm = FALSE)
runsTest(x)
}
\arguments{
\item{description}{
optional description string, or a vector of character strings.
}
\item{method}{
[normalTest] - \cr
indicates four different methods for the normality test,
\code{"ks"} for the Kolmogorov-Smirnov one--sample test,
\code{"sw"} for the Shapiro-Wilk test,
\code{"jb"} for the Jarque-Bera Test, and
\code{"da"} for the D'Agostino Test.
The default value is \code{"ks"}.
}
\item{N}{
an integer value specifying the sample size.
}
\item{na.rm}{
[normalTest] - \cr
a logical value. Should missing values removed before computing
the tests? The default value is \code{FALSE}.
}
\item{p}{
a numeric vector of probabilities. Missing values are not
allowed.
}
\item{q}{
vector of quantiles or test statistics. Missing values are not
allowed.
}
\item{size}{
[jbTable] - \cr
a character string denoting the size of the table. If set
to \code{"all"} then all data are used from the table, if
set to \code{"small"} then only a small part of the data
will be returned.
}
\item{title}{
an optional title string, if not specified the inputs data
name is deparsed.
}
\item{type}{
[jbTest][pjb][qjb] - \cr
the same for the Jarque Bera test statistic. \code{"LM"}
denotes the Lagrange multiplier test, and \code{"ALM"} the
adjusted Lagrange multiplier test.
}
\item{x}{
a numeric vector of data values or a S4 object of class
\code{timeSeries}.
}
}
\value{
In contrast to R's output report from S3 objects of class \code{"htest"}
a different output report is produced. The tests here return an S4
object of class \code{"fHTEST"}. The object contains the following slots:
\item{@call}{
the function call.
}
\item{@data}{
the data as specified by the input argument(s).
}
\item{@test}{
a list whose elements contail the results from the statistical
test. The information provided is similar to a list object of
class{"htest"}.
}
\item{@title}{
a character string with the name of the test. This can be
overwritten specifying a user defined input argument.
}
\item{@description}{
a character string with an optional user defined description.
By default just the current date when the test was applied will
be returned.
}
The slot \code{@test} returns an object of class \code{"list"}
containing the following (otionally empty) elements:
\item{statistic}{
the value(s) of the test statistic.
}
\item{p.value}{
the p-value(s) of the test.
}
\item{parameters}{
a numeric value or vector of parameters.
}
\item{estimate}{
a numeric value or vector of sample estimates.
}
\item{conf.int}{
a numeric two row vector or matrix of 95% confidence levels.
}
\item{method}{
a character string indicating what type of test was performed.
}
\item{data.name}{
a character string giving the name(s) of the data.
}
The meaning of the elements of the \code{@test} slot is the following:
\code{ksnormTest}
\cr
returns the values for the 'D' statistic and p-values for the three
alternatives 'two-sided, 'less' and 'greater'.
\code{shapiroTest}
\cr
returns the values for the 'W' statistic and the p-value.
\code{jarqueberaTest}\cr
\code{jbTest}
\cr
returns the values for the 'Chi-squared' statistic with 2 degrees of
freedom, and the asymptotic p-value. \code{jbTest} is the finite sample
version of the Jarque Bera Lagrange multiplier, LM, and adjusted
Lagrange multiplier test, ALM.
\code{dagoTest}
\cr
returns the values for the 'Chi-squared', the 'Z3' (Skewness) and 'Z4'
(Kurtosis) statistic together with the corresponding p values.
\code{adTest}
\cr
returns the value for the 'A' statistic and the p-value.
\code{cvmTest}
\cr
returns the value for the 'W' statistic and the p-value.
\code{lillieTest}
\cr
returns the value for the 'D' statistic and the p-value.
\code{pchiTest}
\cr
returns the value for the 'P' statistic and the p-values for the
adjusted and not adjusted test cases. In addition the number of
classes is printed, taking the default value due to Moore (1986)
computed from the expression \code{n.classes = ceiling(2 * (n^(2/5)))},
where \code{n} is the number of observations.
\code{sfTest}
\cr
returns the value for the 'W' statistic and the p-value.
}
\details{
The hypothesis tests may be of interest for many financial
and economic applications, especially for the investigation
of univariate time series returns.
\cr
\bold{Normal Tests:}
\cr\cr
Several tests for testing if the records from a data set are normally
distributed are available. The input to all these functions may be
just a vector \code{x} or a univariate time series object \code{x}
of class \code{timeSeries}.
First there exists a wrapper function which allows to call one from
two normal tests either the Shapiro--Wilks test or the Jarque--Bera
test. This wrapper was introduced for compatibility with S-Plus'
FinMetrics package.
Also available are the Kolmogorov--Smirnov one sample test and the
D'Agostino normality test.
The remaining five normal tests are the Anderson--Darling test,
the Cramer--von Mises test, the Lilliefors (Kolmogorov--Smirnov)
test, the Pearson chi--square test, and the Shapiro--Francia test.
They are calling functions from R's contributed package \code{nortest}.
The difference to the original test functions implemented in R and
from contributed R packages is that the Rmetrics functions accept
time series objects as input and give a more detailed output report.
The Anderson-Darling test is used to test if a sample of data came
from a population with a specific distribution, here the normal
distribution. The \code{adTest} goodness-of-fit test can be
considered as a modification of the Kolmogorov--Smirnov test which
gives more weight to the tails than does the \code{ksnormTest}.
\cr
\bold{Runs Test:}
\cr\cr
The runs test can be used to decide if a data set is from a random
process. A run is defined as a series of increasing values or a
series of decreasing values. The number of increasing, or decreasing,
values is the length of the run. In a random data set, the probability
that the \emph{(i+1)-th} value is larger or smaller than the \emph{i-th}
value follows a binomial distribution, which forms the basis of the
runs test.
}
\note{
Some of the test implementations are selected from R's \code{ctest}
and \code{nortest} packages.
}
\references{
Anderson T.W., Darling D.A. (1954);
\emph{A Test of Goodness of Fit},
JASA 49:765--69.
Conover, W. J. (1971);
\emph{Practical nonparametric statistics},
New York: John Wiley & Sons.
D'Agostino R.B., Pearson E.S. (1973);
\emph{Tests for Departure from Normality},
Biometrika 60, 613--22.
D'Agostino R.B., Rosman B. (1974);
\emph{The Power of Geary's Test of Normality},
Biometrika 61, 181--84.
Durbin J. (1961);
\emph{Some Methods of Constructing Exact Tests},
Biometrika 48, 41--55.
Durbin,J. (1973);
\emph{Distribution Theory Based on the Sample Distribution Function},
SIAM, Philadelphia.
Geary R.C. (1947);
\emph{Testing for Normality};
Biometrika 36, 68--97.
Lehmann E.L. (1986);
\emph{Testing Statistical Hypotheses},
John Wiley and Sons, New York.
Linnet K. (1988);
\emph{Testing Normality of Transformed Data},
Applied Statistics 32, 180--186.
Moore, D.S. (1986);
\emph{Tests of the chi-squared type},
In: D'Agostino, R.B. and Stephens, M.A., eds.,
Goodness-of-Fit Techniques, Marcel Dekker, New York.
Shapiro S.S., Francia R.S. (1972);
\emph{An Approximate Analysis of Variance Test for Normality},
JASA 67, 215--216.
Shapiro S.S., Wilk M.B., Chen V. (1968);
\emph{A Comparative Study of Various Tests for Normality},
JASA 63, 1343--72.
Thode H.C. (2002);
\emph{Testing for Normality},
Marcel Dekker, New York.
Weiss M.S. (1978);
\emph{Modification of the Kolmogorov-Smirnov
Statistic for Use with Correlated Data},
JASA 73, 872--75.
Wuertz D., Katzgraber H.G. (2005);
\emph{Precise finite-sample quantiles of the
Jarque-Bera adjusted Lagrange multiplier test},
ETHZ Preprint.
}
\author{
R-core team for the tests from \R's ctest package,\cr
Adrian Trapletti for the runs test from \R's tseries package,\cr
Juergen Gross for the normal tests from \R's nortest package,\cr
James Filliben for the Fortran program producing the runs report,\cr
Diethelm Wuertz and Helmut Katzgraber for the finite sample JB tests, \cr
Diethelm Wuertz for the Rmetrics \R-port.
}
\examples{
## SOURCE("fBasics.5B-OneSampleTests")
## Series:
x = rnorm(100)
## ksnormTests -
# Kolmogorov - Smirnov One-Sampel Test
ksnormTest(x)
## shapiroTest - Shapiro-Wilk Test
shapiroTest(x)
## jarqueberaTest -
## jbTest - Jarque-Bera Test
jarqueberaTest(x)
jbTest(x)
## runsTest -
runsTest(x)
}
\keyword{htest}
|