1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380
|
\name{TwoSampleTests}
\alias{TwoSampleTests}
% two sample tests:
\alias{ks2Test}
\alias{locationTest}
%\alias{.tTest}
%\alias{.kw2Test}
\alias{varianceTest}
%\alias{.varfTest}
%\alias{.bartlett2Test}
%\alias{.fligner2Test}
\alias{scaleTest}
%\alias{.ansariTest}
%\alias{.moodTest}
\alias{correlationTest}
\alias{.pearsonTest}
\alias{.kendallTest}
\alias{.spearmanTest}
% Distribution
\alias{dansariw}
\alias{pansariw}
\alias{qansariw}
\title{Two Sample Tests}
\description{
A collection and description of functions for
two sample statistical tests. The functions allow
to test for distributional equivalence, for difference
in location, variance and scale, and for correlations.
\cr
Distributional Equivalence:
\tabular{ll}{
\code{ks2Test} \tab Two sample Kolmogorov--Smirnov test.}
Difference in Locations:
\tabular{ll}{
\code{locationTest} \tab The location test suite, \cr
\code{.tTest} \tab The t test, \cr
\code{.kw2Test} \tab the Kruskal--Wallis test. }
Difference in Variance:
\tabular{ll}{
\code{varianceTest} \tab The variance test suite, \cr
\code{.varfTest} \tab The variance F test, \cr
\code{.bartlett2Test} \tab the Bartlett test, \cr
\code{.fligner2Test} \tab the Fligner--Killeen test.}
Difference in Scale:
\tabular{ll}{
\code{scaleTest} \tab The scale test suite, \cr
\code{.ansariTest} \tab The Ansari--Bradley test, \cr
\code{.moodTest} \tab the Mood test.}
Correlations:
\tabular{ll}{
\code{correlationTest} \tab The correlation test suite, \cr
\code{.pearsonTest} \tab Pearson's coefficient, \cr
\code{.kendallTest} \tab Kendall's rho, \cr
\code{.spearmanTest} \tab Spearman's rho.}
Test Distributions:
\tabular{ll}{
\code{dansariw} \tab Returns density of the Ansari W statistic, \cr
\code{pansariw} \tab Returns probabilities of the Ansari W statistic, \cr
\code{qansariw} \tab Returns quantiles of the Ansari W statistic. }
}
\usage{
ks2Test(x, y, title = NULL, description = NULL)
locationTest(x, y, method = c("t", "kw2"), title = NULL,
description = NULL)
%tTest(x, y, title = NULL, description = NULL)
%kw2Test(x, y, title = NULL, description = NULL)
varianceTest(x, y, method = c("varf", "bartlett", "fligner"), title = NULL,
description = NULL)
%varfTest(x, y, title = NULL, description = NULL)
%bartlett2Test(x, y, title = NULL, description = NULL)
%fligner2Test(x, y, title = NULL, description = NULL)
scaleTest(x, y, method = c("ansari", "mood"), title = NULL,
description = NULL)
%ansariTest(x, y, title = NULL, description = NULL)
%moodTest(x, y, title = NULL, description = NULL)
correlationTest(x, y, method = c("pearson", "kendall", "spearman"), title = NULL,
description = NULL)
%pearsonTest(x, y, title = NULL, description = NULL)
%kendallTest(x, y, title = NULL, description = NULL)
%spearmanTest(x, y, title = NULL, description = NULL)
dansariw(x = NULL, m, n = m)
pansariw(q = NULL, m, n = m)
qansariw(p, m, n = m)
}
\arguments{
\item{description}{
optional description string, or a vector of character strings.
}
\item{m, n}{
[*ansariw] - \cr
}
\item{method}{
a character string naming which test should be applied.
}
\item{p}{
[qansariw] - \cr
a numeric vector of quantiles.
}
\item{q}{
[pansariw] - \cr
a numeric vector of quantiles.
}
\item{title}{
an optional title string, if not specified the inputs data
name is deparsed.
}
\item{x, y}{
a numeric vector of data values.
\cr
[bartlett2Test][fligner2Test][kw2Test] - \cr
here \code{x} is a list, where each element is either a vector
or an object of class \code{timeSeries}. \code{y} is only used
for the two--sample test situation, where \code{x} and \code{y}
are two vectors or objects of class \code{timeSeries}.
\cr
[dansariw] - \cr
a numeric vector of quantiles.
}
}
\value{
In contrast to R's output report from S3 objects of class \code{"htest"}
a different output report is produced. The classical tests presented
here return an S4 object of class \code{"fHTEST"}. The object contains
the following slots:
\item{@call}{
the function call.
}
\item{@data}{
the data as specified by the input argument(s).
}
\item{@test}{
a list whose elements contail the results from the statistical
test. The information provided is similar to a list object of
class{"htest"}.
}
\item{@title}{
a character string with the name of the test. This can be
overwritten specifying a user defined input argument.
}
\item{@description}{
a character string with an optional user defined description.
By default just the current date when the test was applied will
be returned.
}
The slot \code{@test} returns an object of class \code{"list"}
containing (at least) the following elements:
\item{statistic}{
the value(s) of the test statistic.
}
\item{p.value}{
the p-value(s) of the test.
}
\item{parameters}{
a numeric value or vector of parameters.
}
\item{estimate}{
a numeric value or vector of sample estimates.
}
\item{conf.int}{
a numeric two row vector or matrix of 95% confidence levels.
}
\item{method}{
a character string indicating what type of test was performed.
}
\item{data.name}{
a character string giving the name(s) of the data.
}
%The meaning of the elements of the \code{@test} slot is the following:
%\code{ks2Test}
%\cr
%returns the values for the \code{D}, \code{D^-} and \code{D^+}
%statistic and the corresponding p-values for the 'two-sided', 'less'
%and 'greater' alternatives.
}
\details{
The tests may be of interest for many financial
and economic applications, especially for the
comparison of two time series. The tests are grouped
according to their functionalities.
\cr
\bold{Distributional Equivalence:}
\cr\cr
The test \code{ks2Test} performs a Kolmogorov--Smirnov two sample test
that the two data samples \code{x} and \code{y} come from the same
distribution, not necessarily a normal distribution. That means that
it is not specified what that common distribution is.
\cr
\bold{Differences in Location:}
\cr\cr
The function \code{tTest} can be used to determine if the two sample
means are equal for unpaired data sets. Two variants are used,
assuming equal or unequal variances.
The function \code{kw2Test} performs a Kruskal-Wallis rank sum
test of the null hypothesis that the central tendencies or medians of
two samples are the same. The alternative is that they differ.
Note, that it is not assumed that the two samples are drawn from the
same distribution. It is also worth to know that the test assumes
that the variables under consideration have underlying continuous
distributions.
\cr
\bold{Differences in Variances:}
\cr\cr
The function \code{varfTest} can be used to compare variances of two
normal samples performing an F test. The null hypothesis is that
the ratio of the variances of the populations from which they were
drawn is equal to one.
The function \code{bartlett2Test} performs the Bartlett's test of the
null hypothesis that the variances in each of the samples are the
same. This fact of equal variances across samples is also called
\emph{homogeneity of variances}. Note, that Bartlett's test is
sensitive to departures from normality. That is, if the samples
come from non-normal distributions, then Bartlett's test may simply
be testing for non-normality. The Levene test (not yet implemented)
is an alternative to the Bartlett test that is less sensitive to
departures from normality.
The function \code{fligner2Test} performs the Fligner-Killeen test of
the null that the variances in each of the two samples are the same.
\cr
\bold{Differences in Scale:}
\cr\cr
The function \code{ansariTest} performs the Ansari--Bradley two--sample
test for a difference in scale parameters. Note, that we have completely
reimplemented this test based on the statistcs and p-values computed
from algorithm AS 93. The test returns for any sizes of the series
\code{x} and \code{y} the exact p value together with its asymptotic
limit. The test procedure is not limited to sizes shorter of length 50
as this is the case for the function \code{ansari.Test} implemented in
R's \code{stats} package. For the test statistics the following
functions are available: \code{dansariw}, \code{pansariw}, and
\code{qansariw}.
The function code{moodTest}, is another test which performs a
two--sample test for a difference in scale parameters. The underlying
model is that the two samples are drawn from \emph{f(x-l)} and
\emph{f((x-l)/s)/s}, respectively, where \emph{l} is a common
location parameter and \emph{s} is a scale parameter. The null
hypothesis is \emph{s=1}.
\cr
\bold{Correlations:}
\cr\cr
The function \code{correlationTest} tests for association
between paired samples, using Pearson's product moment
correlation coefficient,
The function \code{kendallTest} performs Kendall's tau test
The function \code{spearmanTest} performs Spearman's rho test.
}
\note{
Some of the test implementations are selected from \R's \code{ctest}
package.
}
\references{
Conover, W. J. (1971);
\emph{Practical nonparametric statistics},
New York: John Wiley & Sons.
Durbin J. (1961);
\emph{Some Methods of Constructing Exact Tests},
Biometrika 48, 41--55.
Durbin,J. (1973);
\emph{Distribution Theory Based on the Sample Distribution Function},
SIAM, Philadelphia.
Lehmann E.L. (1986);
\emph{Testing Statistical Hypotheses},
John Wiley and Sons, New York.
Moore, D.S. (1986);
\emph{Tests of the chi-squared type},
In: D'Agostino, R.B. and Stephens, M.A., eds.,
Goodness-of-Fit Techniques, Marcel Dekker, New York.
}
\author{
R-core team for the tests from \R's ctest package,\cr
Diethelm Wuertz for the Rmetrics \R-port.
}
\examples{
## SOURCE("fBasics.5C-TwoSampleTests")
## x, y -
x = rnorm(50)
y = rnorm(50)
## ks2Test -
ks2Test(x, y)
## locationTest | .tTest | .kw2Test -
locationTest(x, y)
## varianceTest | .varfTest, .bartlett2Test | .fligner2Test -
varianceTest(x, y)
## scaleTest | .ansariTest | .moodTest -
scaleTest(x, y)
## correlationTest | .pearsonTest | .kendallTest | .spearmanTest -
correlationTest(x, y)
}
\keyword{htest}
|