1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION:
# .pgld
# .qgld
# .qgl.fmkl
# .qgl.fm5
# .qgl.rs
# .qdgld
# .qdgl.rs
# .qdgl.fmkl
# .qdgl.fm5
# .rgld
# .gl.parameter.tidy
# .gl.check.lambda
################################################################################
# Code borrowed from
# R's contributed package "gld" written by Robert King
# Rmetrics:
# Note that gmm is not available on Debian as of 2009-11-11.
# To run these functions under Debian/Rmetrics we have them
# implemented here as a builtin.
# Package: gld
# Version: 1.8.4
# Date: 2008/10/01
# Title: Estimation and use of the generalised (Tukey) lambda distribution
# Author: Robert King <Robert.King@newcastle.edu.au>
# Maintainer: Robert King <Robert.King@newcastle.edu.au>
# Description: The generalised lambda distribution, or Tukey lambda
# distribution, provides a wide variety of shapes with one
# functional form. This package provides random numbers,
# quantiles, probabilities, densities and plots. It also
# includes an implementation of the starship estimation method
# for the distribution.
# License: GPL (>= 2)
# URL: http://tolstoy.newcastle.edu.au/~rking/publ/rprogs/information.html
# Packaged: 2009-10-14
################################################################################
.dgld <-
function(x, lambda1=0, lambda2=NULL, lambda3=NULL, lambda4=NULL, param="fmkl",
lambda5=NULL, inverse.eps=1e-8, max.iterations=500)
{
# Tidy the parameters so gl.check.lambda will work
lambdas <-
.gl.parameter.tidy(lambda1, lambda2, lambda3, lambda4, param, lambda5)
# Check the parameters
if(!.gl.check.lambda(lambdas, param=param, vect=TRUE)) {
stop(paste("The parameter values", lambdas,
"\ndo not produce a proper distribution with the", param,
"parameterisation - see \ndocumentation for .gl.check.lambda"))
}
# calculate u=F(x) numerically, then use qdgl
# Unless x is outside the range, then density should be zero
extreme <- .qgld(c(0, 1), lambda1=lambdas, param=param)
# It may be better to change this to simply
# (x <= extreme[2])*(x >= extreme[1])
outside.range <- !as.logical((x<=extreme[2])*(x>=extreme[1]))
u <- .pgld(x, lambdas, param=param, inverse.eps=inverse.eps,
max.iterations=max.iterations)
dens <- .qdgld(u, lambda1=lambdas, param=param)
dens[outside.range] <- 0
dens
}
################################################################################
.pgld <-
function(q, lambda1=0, lambda2=NULL, lambda3=NULL, lambda4=NULL,
param="fmkl", lambda5=NULL, inverse.eps=1e-8, max.iterations=500)
{
# Thanks to Steve Su, <s.su@qut.edu.au>, for improvements to this code
# If lambda1 is a vector, the default value for lambda2 will cause a
# problem.
# I did have a warning about this, but it will occur too often to make
# up for the benefit, so I've deleted it.
# Tidy the parameters so gl.check.lambda will work
lambdas <-
.gl.parameter.tidy(lambda1, lambda2, lambda3, lambda4, param, lambda5)
# Check the parameters
if(!.gl.check.lambda(lambdas, param=param, vect=TRUE)) {
stop(paste("The parameter values", lambda1, lambda2, lambda3, lambda4,
"\ndo not produce a proper distribution with the", param,
"parameterisation - see \ndocumentation for gl.check.lambda"))
}
jr <- q; jr[sort.list(q)] <- seq(along=q)
order.x<-order(q)
xx<-sort(q)
# xx has the sorted data, and jr & order.x the information to get back
# to theoriginal order.
extreme <- .qgld(c(inverse.eps, 1-inverse.eps), lambda1=lambdas,
param=param)
max.e<-extreme[2]
min.e<-extreme[1]
ind.min<-xx<=min.e
ind.max<-xx>=max.e
# This simpler comparison works here because we are using inverse.eps as our
# tolerance
q<-xx[as.logical((xx<max.e)*(xx>min.e))]
# We only want to calculate the probabilities for q values inside
# the support
length.of.vector <- length(q)
# Need a blank u to send to C
u <- 0*q
result <- switch(param,
freimer=, # allows for alternate expressions
frm=, # allows for alternate expressions
FMKL=, # Notes on .C call - the "numerics", lambdas and inverse.eps
# don't need the as.??? call as they are implicitly double
fmkl=.C(
C_gl_fmkl_distfunc, lambdas[1], lambdas[2], lambdas[3], lambdas[4],
as.double(0), as.double(1), inverse.eps,
as.integer(max.iterations), as.double(q), as.double(u),
as.integer(length.of.vector)),
ramberg=, # Ramberg & Schmeiser
ram=,
RS=,
rs=.C(
C_gl_rs_distfunc, lambdas[1], lambdas[2], lambdas[3], lambdas[4],
as.double(0), as.double(1), inverse.eps,
as.integer(max.iterations), as.double(q), as.double(u),
as.integer(length.of.vector)),
fm5=.C(C_gl_fm5_distfunc, lambdas[1], lambdas[2], lambdas[3],
lambdas[4], lambdas[5],
as.double(0), as.double(1), inverse.eps,
as.integer(max.iterations), as.double(q), as.double(u),
as.integer(length.of.vector)),
stop("Error: Parameterisation must be one of fmkl, fm5 or rs")
) # closes "switch"
if (!(is.numeric(result[[1]]))){
stop("Values for quantiles outside range. This shouldn't happen")
}
if (param=="fm5") {
u <- result[[11]]
} else {
u <- result[[10]]
}
xx[as.logical((xx<max.e)*(xx>min.e))]<-u
xx[ind.min]<-0
xx[ind.max]<-1
# Revert to the original order of the dataset:
xx[jr]
}
################################################################################
.qgld <-
function(p, lambda1, lambda2=NULL, lambda3=NULL, lambda4=NULL,
param="fmkl", lambda5=NULL)
{
lambdas <-
.gl.parameter.tidy(lambda1, lambda2, lambda3, lambda4, param, lambda5)
# Check the values are OK
if(!.gl.check.lambda(lambdas, param=param, vect=TRUE)) {
stop(paste("The parameter values", paste(lambdas, collapse=" "),
"\ndo not produce a proper distribution for the", param,
"parameterisation \n - see documentation for gl.check.lambda"))
}
result <- switch(param,
freimer=, # allows for alternate expressions
frm=, # allows for alternate expressions
FMKL=,
fmkl=.qgl.fmkl(p, lambdas),
ramberg=, # Ramberg & Schmeiser
ram=,
RS=,
rs=.qgl.rs(p, lambdas),
fm5 = .qgl.fm5(p, lambdas),
stop("Error: Parameterisation must be fmkl, fm5 or rs")
) # closes "switch"
result
}
# ------------------------------------------------------------------------------
.qgl.fmkl <-
function(p, lambdas)
{
# No checking - use qgl if you want that
lambda4 = lambdas[4]
lambda3 = lambdas[3]
lambda2 = lambdas[2]
lambda1 = lambdas[1]
p <- as.double(p)
# abandoned this for the simpler one below
# outside.range <- !as.logical(((p<1)*(p>0))|
# (sapply(p, all.equal, 1)=="TRUE")| (sapply(p, all.equal, 0)=="TRUE"))
outside.range <- !as.logical((p<=1)*(p>=0))
# u gets only the probabilities in [0, 1]
u <- p[!outside.range]
# If OK, determine special cases
if (lambda3 == 0) {
if (lambda4 == 0) { # both log
quants <- lambda1 + (log(u) - log(1 - u))/lambda2
}
else { # l3 zero, l4 non-zero
quants <- lambda1 +
(log(u) - ((1 - u)^lambda4 - 1)/lambda4)/lambda2
}
} else { # lambda3 non-zero
if (lambda4 == 0) { # non-zero, l4 zero
quants <- lambda1 +
((u^lambda3 - 1)/lambda3 - log(1 - u))/lambda2
} else { # both non-zero - use usual formula
quants <- lambda1 + ( ( u ^ lambda3 - 1) / lambda3 -
( (1-u)^lambda4 - 1) /lambda4 ) / lambda2
}
}
# Now we have the quantiles for p values inside [0, 1], put them in
# the right place in the result vector
result <- p*NaN
result[!outside.range] <- quants
# The remaining "quantiles" are NaN
result
}
# ------------------------------------------------------------------------------
.qgl.fm5 <-
function(p, lambdas)
{
# No parameter value checking. If you want that, use qgl!
lambda5 = as.double(lambdas[5])
lambda4 = as.double(lambdas[4])
lambda3 = as.double(lambdas[3])
lambda2 = as.double(lambdas[2])
lambda1 = as.double(lambdas[1])
p <- as.double(p)
# abandoned this for the simpler
# outside.range <- !as.logical(((p<1)*(p>0))|
# (sapply(p, all.equal, 1)=="TRUE")| (sapply(p, all.equal, 0)=="TRUE"))
outside.range <- !as.logical((p<=1)*(p>=0))
# u gets only the probabilities in [0, 1]
u <- p[!outside.range]
# If OK, determine special cases
if (lambda3 == 0) {
if (lambda4 == 0) { # both log
quants <- lambda1 + ((1-lambda5)*log(u) -
(1+lambda5)*log(1 - u))/lambda2
} else { # l3 zero, l4 non-zero
quants <- lambda1 +
((1-lambda5)*log(u) -
(1+lambda5)*((1 - u)^lambda4 - 1)/lambda4)/lambda2
}
} else { # lambda3 non-zero
if (lambda4 == 0) { # non-zero, l4 zero
quants <- lambda1 +
((1-lambda5)*(u^lambda3 - 1)/lambda3 -
(1+lambda5)*log(1 - u))/lambda2
} else { # both non-zero - use usual formula
quants <- lambda1 + ((1-lambda5)* ( u ^ lambda3 - 1) / lambda3
- (1+lambda5)*( (1-u)^lambda4 - 1) /lambda4 ) / lambda2
}
}
# Now we have the quantiles for p values inside [0, 1], put them in
# the right place in the result vector
result <- p*NaN
result[!outside.range] <- quants
# The remaining "quantiles" are NaN
result
}
# ------------------------------------------------------------------------------
.qgl.rs <-
function(p, lambdas)
{
u <- p
# No parameter value checking - use qgl!
lambda4 = lambdas[4]
lambda3 = lambdas[3]
lambda2 = lambdas[2]
lambda1 = lambdas[1]
# At present, I'm rejecting zero values for l3 and l4, though I think
# there are limit results, so one functional form.
quants <- lambda1 + ( u ^ lambda3 - (1-u)^lambda4 ) / lambda2
quants
}
# ------------------------------------------------------------------------------
.qdgld <-
function(p, lambda1, lambda2=NULL, lambda3=NULL, lambda4=NULL,
param="fmkl", lambda5=NULL)
{
# Don't allow characters in lambda5 -
# common error with parameterisation stuff
if(is.character(lambda5)) {
stop(paste("lambda5=", lambda5,
"It should be a number between -1 and 1"))
}
lambdas <-
.gl.parameter.tidy(lambda1, lambda2, lambda3, lambda4, param, lambda5)
# Check the values are OK
if(!.gl.check.lambda(lambdas, param=param, vect=TRUE)) {
stop(paste("The parameter values", paste(lambdas, collapse=" "),
"\ndo not produce a proper distribution for the", param,
"parameterisation \n - see documentation for gl.check.lambda"))
}
result <- switch(param,
# Different tests apply for each parameterisation
freimer=, # allows for alternate expressions
frm=, # allows for alternate expressions
FMKL=,
fmkl=.qdgl.fmkl(p, lambdas),
ramberg=, # Ramberg & Schmeiser
ram=,
RS=,
rs=.qdgl.rs(p, lambdas),
fm5 = .qdgl.fm5(p, lambdas),
stop("Error: Parameterisation must be fmkl, fm5 or rs")
) # closes "switch"
result
}
# ------------------------------------------------------------------------------
.qdgl.rs <-
function(p, lambdas)
{
# Check the values are OK)
if(!.gl.check.lambda(lambdas, param="rs", vect=TRUE)) {
stop(paste("The parameter values", paste(lambdas, collapse=" "),
"\ndo not produce a proper distribution with the RS parameterisation",
" - see \ndocumentation for gl.check.lambda"))
}
outside.range <- !as.logical((p<=1)*(p>=0))
# u gets only the probabilities in [0, 1]
u <- p[!outside.range]
dens <- lambdas[2]/(lambdas[3] * (p^(lambdas[3] -1)) +
lambdas[4] * ((1 - p)^(lambdas[4] -1)))
dens
}
# ------------------------------------------------------------------------------
.qdgl.fmkl <-
function(p, lambdas)
{
# Check the values are OK)
if(!.gl.check.lambda(lambdas, param="fmkl", vect=TRUE)) {
stop(paste("The parameter values", paste(lambdas, collapse=" "),
"\ndo not produce a proper distribution with the FMKL",
"parameterisation - see \ndocumentation for gl.check.lambda"))
}
outside.range <- !as.logical((p<=1)*(p>=0))
# u gets only the probabilities in [0, 1]
u <- p[!outside.range]
# The density is given by 1/Q'(u)
dens <- lambdas[2]/(p^(lambdas[3] - 1) + (1 - p)^(lambdas[4] - 1))
dens
}
# ------------------------------------------------------------------------------
.qdgl.fm5 <-
function(p, lambdas)
{
# Check the values are OK)
if(!.gl.check.lambda(lambdas, param="fm5", vect=TRUE)) {
stop(paste("The parameter values", paste(lambdas, collapse=" "),
"\ndo not produce a proper distribution with the FM5",
"parameterisation - see \ndocumentation for gl.check.lambda"))
}
outside.range <- !as.logical((p<=1)*(p>=0))
# u gets only the probabilities in [0, 1]
u <- p[!outside.range]
# The density is given by 1/Q'(u)
dens <- lambdas[2]/((1-lambdas[5])*(u^(lambdas[3] - 1)) +
(1+lambdas[5])*((1 - u)^(lambdas[4] - 1)) )
dens
}
################################################################################
.rgld <-
function(n, lambda1=0, lambda2=NULL, lambda3=NULL, lambda4=NULL,
param="fmkl", lambda5=NULL)
{
# Check the parameters
lambdas <-
.gl.parameter.tidy(lambda1, lambda2, lambda3, lambda4, param, lambda5)
# Check the values are OK
if(!.gl.check.lambda(lambdas, param=param, vect=TRUE)) {
stop(paste("The parameter values", lambdas,
"\ndo not produce a proper distribution for the", param,
"parameterisation \n - see documentation for gl.check.lambda"))
}
# Produce the uniform data
p <- runif(n)
# convert to gl
res <- .qgld(p, lambda1=lambdas, param=param)
res
}
################################################################################
.gl.parameter.tidy <-
function(lambda1, lambda2=NULL, lambda3=NULL, lambda4=NULL, param="fmkl",
lambda5=NULL)
{
# Don't allow characters in lambda5 - common error with parameterisation stuff
if(is.character(lambda5)) {stop(paste("lambda5=", lambda5,
"It should be a number between -1 and 1"))}
# Don't allow numbers in parameterisation -
# included as a warning here, so the main one is a stop.
if(!is.character(param)) {warning(paste("param=", param,
"It shouldn't be a number, ",
"it should be a string describing the parameterisation"))
}
if(length(lambda1) > 1) {
# using a vector for the parameters.
# Check that there aren't values in the individual lambda arguments
if (!(is.null(lambda2) & is.null(lambda3)& is.null(lambda4) &
is.null(lambda5)) )
{ stop("Call includes vector version of the lambda parameters",
"as well as the \nscalar version")
}
if ((length(lambda1) < 4) | (length(lambda1) > 5 ) )
{ stop(paste("argument lambda1 has length", length(lambda1),
"\nThis should be 1 (lambda parameters given as seperate ",
"arguments), 4 (vector argument \n for RS or FMKL ",
"parameterisation) or 5 (vector argument for fm5",
"parameterisation"))
}
if (length(lambda1)== 5)
{ if (param != "fm5") {
stop(paste("argument lambda1 has length", length(lambda1),
"which is not valid for the", param, "\nparameterisation"))
}
# else --- fm5, in vector form, ready for gl.check.lambda
}
if (length(lambda1)== 4) {
if (param == "fm5" )
{ stop(paste("argument lambda1 has length 4, which is not",
" valid for the fm5 \nparameterisation"))
}
# else --- 4 parameter versions in vector form, ready for gl.check.lambda
}
} else {
# single parameter arguments - check they are there,
# then collect them together
if (is.null(lambda2)) { stop("No value for lambda2") }
if (is.null(lambda3)) { stop("No value for lambda3") }
if (is.null(lambda4)) { stop("No value for lambda4") }
if ((is.null(lambda5)) & param=="fm5" ) {
stop("No value for lambda5") }
if (!(is.null(lambda5)) & param!="fm5") {
stop(paste("lambda5=", lambda5, " but there is no lambda 5 for the\n",
param, "parameterisation")) }
if (param != "fm5") { # A 4 parameter version
lambda1 <- c(lambda1, lambda2, lambda3, lambda4)
} else { # fm5
lambda1 <- c(lambda1, lambda2, lambda3, lambda4, lambda5)
}
}
# There is now an error if there is the wrong number of parameters, and
# lambda1 returned as a vector with 4 or 5 elements
# as.double is needed to remove data.frame attributes if lambda1 was
# extracted from a data.frame
as.double(lambda1)
}
# ------------------------------------------------------------------------------
.gl.check.lambda <-
function(lambdas, lambda2=NULL, lambda3=NULL, lambda4=NULL,
param="fmkl", lambda5=NULL, vect=FALSE)
{
# Checks to see that the lambda values given are allowed.
# There is a function called .gl.parameter.tidy that does the tidying
# around of parameters. It return a single vector, which contains the
# parameters.
# If you call this after .gl.parameter.tidy, let it know with the vect=TRUE
# argument
# If vect=TRUE, we don't need to tidy
if (vect) {
if (!is.null(lambda3)) {
warning("lambda3 should be null because you claim the",
" parameters are in a vector")
}
} else {
lambdas <-
.gl.parameter.tidy(lambdas, lambda2, lambda3, lambda4, param, lambda5)
}
if(param=="fm5"){lambda5 = lambdas[5]}
lambda4 = lambdas[4]
lambda3 = lambdas[3]
lambda2 = lambdas[2]
lambda1 = lambdas[1]
# I did have a check for finite lambdas, but that caused a
# problem with data frames,
# so I removed it - still need to include the limit results
param <- switch(param,
# Different tests apply for each parameterisation
freimer=, # allows for alternate expressions
frm=, # allows for alternate expressions
FMKL=,
fmkl={
if (lambda2<=0) {return(FALSE)}
else {return(TRUE)}
},
ramberg=, # Ramberg & Schmeiser
ram=,
RS=,
rs={
if (lambda3*lambda4>0) { # regions 3 and 4
# all values of lambda 3 and lambda 4 OK
# check lambda 2
if ((lambda3>0)&(lambda4>0)) { # region 3 - l2 >0
if (lambda2<=0) {
ret <- FALSE
} else {
ret <- TRUE
}
}
if ((lambda3<0)&(lambda4<0)) { # region 4 - l2 <0
if (lambda2>=0) {
ret <- FALSE
} else {
ret <- TRUE
}
}
} else { # other quadrants - lambda 2 must be negative, and lambda3
# lambda 4 values need checking.
if (lambda2>=0) {return(FALSE)}
# Rectangular regions where RS is not defined
if ((lambda3>0)&(lambda3<1)&(lambda4<0)) {return(FALSE)}
if ((lambda4>0)&(lambda4<1)&(lambda3<0)) {return(FALSE)}
# Different here because there are a
# number of ways in which the parameters can fail.
#
# Curved regions where RS is not defined
# change to shorter var names
lc <- lambda3
ld <- lambda4
if ((lambda3>-1)&(lambda3<0)&(lambda4>1)) { # region 5 or not?
if ( ((1-lc)^(1-lc)*(ld-1)^(ld-1))/((ld-lc)^(ld-lc)) > -lc/ld )
{return(FALSE)}
else {return(TRUE)}
}
# Second curved region
if ((lambda4>-1)&(lambda4<0)&(lambda3>1)) { # region 6 or not?
if ( ((1-ld)^(1-ld)*(lc-1)^(lc-1))/((lc-ld)^(lc-ld)) > -ld/lc )
{return(FALSE)}
else {return(TRUE)}
}
# There may be some limit results that mean these are not correct, but
# I'll check that later
# This is not the place where the possible l3, l4 zero values should appear
if (lambda3 == 0) {
warning('lambda 3 = 0 with RS parameterisation - possible problem')
if (lambda4 == 0) {return(FALSE)}
else {return(TRUE)}
}
if (lambda4 == 0) {
warning('lambda 5 = 0 with RS parameterisation - possible problem')
if (lambda4 == 0) {return(FALSE)}
else {return(TRUE)}
}
# If we get here, then the parameters are OK.
ret <- TRUE
}
},
fm5={
# make lambda5 - in here so it doesn't stuff up the
# other parameterisations
lambda5 <- lambdas[5]
if (lambda2<=0) {ret <- FALSE}
else { #Check lambda5 - should be between -1 and 1, but
# I haven't checked this against a piece of paper
if ((lambda5 >= -1) & (lambda5 <= 1)) {
ret <- TRUE
} else {
ret <- FALSE
}
}
},
stop("Error when checking validity of parameters.\n",
" Parameterisation must be fmkl, rs or fm5")
) # closes "switch"
ret
}
################################################################################
|