File: dist-distCheck.R

package info (click to toggle)
fbasics 4041.97-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,016 kB
  • sloc: ansic: 740; makefile: 14
file content (142 lines) | stat: -rw-r--r-- 5,237 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received A copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA


################################################################################
# FUNCTION:                 DESCRIPTION:
#  distCheck                Checks consistency of distributions
################################################################################


distCheck <- function(fun = "norm", n = 1000, robust = TRUE, subdivisions = 100, ...)
{
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Checks consistency of distributions

    # Arguments:
    #   fun - a character string denoting the name of the distribution
    #   n - an integer specifying the number of random variates to be
    #       generated
    #   robust -  a logical flag, should robust estimates be used? By
    #       default \code{TRUE}
    #   subdivisions - an integer specifying the numbers of subdivisions
    #       in integration __ NB: only used in one place, *not* in the other.. hmm

    #   ... - the distributional parameters and passed to integrate()
### FIXME (MM): add  args.integrate = list()   to be passed to integrate(),
### -----       and pass the others to distrib.functions

    # Examples:
    #   .distCheck("norm", mean = 1, sd = 1)
    #   .distCheck("t", df = 4)
    #   .distCheck("exp", rate = 2)
    #   .distCheck("weibull", shape = 1)

    # FUNCTION:

    # Distribution Functions:
    cat("\nDistribution Check for:", fun, "\n ")
    CALL = match.call()
    cat("Call: ")
    cat(paste(deparse(CALL), sep = "\n", collapse = "\n"), "\n", sep = "")
    dfun = match.fun(paste("d", fun, sep = ""))
    pfun = match.fun(paste("p", fun, sep = ""))
    qfun = match.fun(paste("q", fun, sep = ""))
    rfun = match.fun(paste("r", fun, sep = ""))

    # Range:
    xmin = qfun(p = 0.01, ...)
    xmax = qfun(p = 0.99, ...)

    # Check 1 - Normalization:
    NORM = integrate(dfun, lower = -Inf, upper = Inf,
        subdivisions = subdivisions, stop.on.error = FALSE, ...)
    cat("\n1. Normalization Check:\n NORM ")
    print(NORM)
    normCheck = (abs(NORM[[1]]-1) < 0.01)

    # Check 2:
    cat("\n2. [p-pfun(qfun(p))]^2 Check:\n ")
    p = c(0.001, 0.01, 0.1, 0.5, 0.9, 0.99, 0.999)
    P = pfun(qfun(p, ...), ...)
    pP = round(rbind(p, P), 3)
    print(pP)
    RMSE = sd(p-P)
    print(c(RMSE = RMSE))
    rmseCheck = (abs(RMSE) < 0.0001)

    # Check 3:
    cat("\n3. r(", n, ") Check:\n", sep = "")
    r = rfun(n = n, ...)
    if (!robust) {
        SAMPLE.MEAN = mean(r)
        SAMPLE.VAR = var(r)
    } else {
        robustSample = MASS::cov.mcd(r, quantile.used = floor(0.95*n))
        SAMPLE.MEAN = robustSample$center
        SAMPLE.VAR = robustSample$cov[1,1]
    }
    SAMPLE = data.frame(t(c(MEAN = SAMPLE.MEAN, "VAR" = SAMPLE.VAR)),
        row.names = "SAMPLE")
    print(signif(SAMPLE, 3))
    fun1 = function(x, ...) { x * dfun(x, ...) }
    fun2 = function(x, M, ...) { x^2 * dfun(x, ...) }
    MEAN = integrate(fun1, lower = -Inf, upper = Inf,
        subdivisions = 5000, stop.on.error = FALSE,...)
    cat("   X   ")
    print(MEAN)
    VAR = integrate(fun2, lower = -Inf, upper = Inf,
        subdivisions = 5000, stop.on.error = FALSE, ...)
    cat("   X^2 ")
    print(VAR)
    EXACT = data.frame(t(c(MEAN = MEAN[[1]], "VAR" = VAR[[1]] - MEAN[[1]]^2)),
        row.names = "EXACT ")
    print(signif(EXACT, 3))
    meanvarCheck = (abs(SAMPLE.VAR-EXACT$VAR)/EXACT$VAR < 0.1)
    cat("\n")

    # Done:
    ans = list(
        normCheck = normCheck,
        rmseCheck = rmseCheck,
        meanvarCheck = meanvarCheck)

    # Return Value:
    unlist(ans)
}


# ------------------------------------------------------------------------------

## (2023-10-15) GNB: Can't remove .distCheck easily since in recent versions of
## fGarch it was imported explicitly in NAMESPACE. This means that if I remove
## it, I need to ask every maintainer importing fGarch to require fGarch (>=
## 4031.90) - not impossible, but not particularly reasonable in the short term.
##
## So, keep it for now.
.distCheck <- function(...) {
    if(("fGarch" %in% loadedNamespaces() && packageVersion("fGarch") < "4031.90") ||
       ("fExtremes" %in% loadedNamespaces() && packageVersion("fExtremes") <= "4021.83") ||
       ("stabledist" %in% loadedNamespaces() && packageVersion("stabledist") <= "0.7-1") ) {
        ## let it work with old versions of fGarch, fExtremes, stabledist
        distCheck(...)
    } else
        stop("'.distCheck' is defunct. Use 'distCheck' instead.")
}

################################################################################