1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: DESCRIPTION:
# dgh Returns density for generalized hyperbolic DF
# pgh Returns probability for generalized hyperbolic DF
# qgh Returns quantiles for generalized hyperbolic DF
# rgh Returns random variates for generalized hyperbolic DF
################################################################################
dgh <-
function(x, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2, log = FALSE)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns density for the generalized hyperbolic distribution
# FUNCTION:
# Parameters:
if (length(alpha) == 4) {
mu = alpha[4]
delta = alpha[3]
beta = alpha[2]
alpha = alpha[1]
}
# Checks:
if (alpha <= 0) stop("alpha must be greater than zero")
if (delta <= 0) stop("delta must be greater than zero")
if (abs(beta) >= alpha) stop("abs value of beta must be less than alpha")
# Density:
arg = delta*sqrt(alpha^2-beta^2)
a = (lambda/2)*log(alpha^2-beta^2) - (
log(sqrt(2*pi)) + (lambda-0.5)*log(alpha) + lambda*log(delta) +
log(besselK(arg, lambda, expon.scaled = TRUE)) - arg )
f = ((lambda-0.5)/2)*log(delta^2+(x - mu)^2)
# Use exponential scaled form to prevent from overflows:
arg = alpha * sqrt(delta^2+(x-mu)^2)
k = log(besselK(arg, lambda-0.5, expon.scaled = TRUE)) - arg
e = beta*(x-mu)
# Put all together:
ans = a + f + k + e
if(!log) ans = exp(ans)
# Return Value:
ans
}
# ------------------------------------------------------------------------------
pgh <-
function(q, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns probability for the generalized hyperbolic distribution
# FUNCTION:
# Checks:
if (alpha <= 0) stop("alpha must be greater than zero")
if (delta <= 0) stop("delta must be greater than zero")
if (abs(beta) >= alpha) stop("abs value of beta must be less than alpha")
# Probability:
ans = NULL
for (Q in q) {
Integral = integrate(dgh, -Inf, Q, stop.on.error = FALSE,
alpha = alpha, beta = beta, delta = delta, mu = mu,
lambda = lambda)
ans = c(ans, as.numeric(unlist(Integral)[1]))
}
# Return Value:
ans
}
# ------------------------------------------------------------------------------
qgh <-
function(p, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns quantiles for the generalized hyperbolic distribution
# FUNCTION:
# Checks:
if (alpha <= 0) stop("alpha must be greater than zero")
if (delta <= 0) stop("delta must be greater than zero")
if (abs(beta) >= alpha) stop("abs value of beta must be less than alpha")
# Internal Function:
.froot <- function(x, alpha, beta, delta, mu, lambda, p)
{
pgh(q = x, alpha = alpha, beta = beta, delta = delta,
mu = mu, lambda = lambda) - p
}
# Quantiles:
result = NULL
for (pp in p) {
lower = -1
upper = +1
counter = 0
iteration = NA
while (is.na(iteration)) {
iteration = .unirootNA(f = .froot, interval = c(lower,
upper), alpha = alpha, beta = beta, delta = delta,
mu = mu, lambda = lambda, p = pp)
counter = counter + 1
lower = lower - 2^counter
upper = upper + 2^counter
}
result = c(result, iteration)
}
# Return Value:
result
}
# ------------------------------------------------------------------------------
rgh <-
function(n, alpha = 1, beta = 0, delta = 1, mu = 0, lambda = -1/2)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns random variates for the generalized hyperbolic distribution
# FUNCTION:
# Checks:
if (alpha <= 0) stop("alpha must be greater than zero")
if (delta <= 0) stop("delta must be greater than zero")
if (abs(beta) >= alpha) stop("abs value of beta must be less than alpha")
# Settings:
theta = c(lambda, alpha, beta, delta, mu)
# Random Numbers:
ans = .rghyp(n, theta)
# Return Value:
ans
}
################################################################################
|