1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: DESCRIPTION:
# hypMED Returns true hyp median
# hypIQR Returns true hyp inter quartal range
# hypSKEW Returns true hyp robust skewness
# hypKURT Returns true hyp robust kurtosis
################################################################################
hypMED <-
function(alpha = 1, beta = 0, delta = 1, mu = 0)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns true gh median
# Arguments:
# beta - a numeric value, the location parameter
# delta - a numeric value, the scale parameter
# mu - a numeric value, the first shape parameter
# nu - a numeric value, the second parameter
# FUNCTION:
# gh Median
Q = qgh(p=0.5, alpha, beta, delta, mu, lambda=1)
med = c(MED = Q)
# Return Value:
med
}
# ------------------------------------------------------------------------------
hypIQR <-
function(alpha = 1, beta = 0, delta = 1, mu = 0)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns true gh inter quartal range
# Arguments:
# beta - a numeric value, the location parameter
# delta - a numeric value, the scale parameter
# mu - a numeric value, the first shape parameter
# nu - a numeric value, the second parameter
# FUNCTION:
# gh Inter Quartile Range
Q = numeric()
Q[1] = qgh(p=0.25, alpha, beta, delta, mu, lambda=1)
Q[2] = qgh(p=0.75, alpha, beta, delta, mu, lambda=1)
iqr = c(IQR = Q[[2]] - Q[[1]])
# Return Value:
iqr
}
# ------------------------------------------------------------------------------
hypSKEW <-
function(alpha = 1, beta = 0, delta = 1, mu = 0)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns true gh robust gh skewness
# Arguments:
# beta - a numeric value, the location parameter
# delta - a numeric value, the scale parameter
# mu - a numeric value, the first shape parameter
# nu - a numeric value, the second parameter
# FUNCTION:
# gh Robust Skewness:
Q = numeric()
Q[1] = qgh(p=0.25, alpha, beta, delta, mu, lambda=1)
Q[2] = qgh(p=0.50, alpha, beta, delta, mu, lambda=1)
Q[3] = qgh(p=0.75, alpha, beta, delta, mu, lambda=1)
skew = c(SKEW = ( Q[[3]] + Q[[1]] - 2* Q[[2]] ) / (Q[[3]] - Q[[1]] ) )
# Return Value:
skew
}
# ------------------------------------------------------------------------------
hypKURT <-
function(alpha = 1, beta = 0, delta = 1, mu = 0)
{
# A function implemented by Diethelm Wuertz
# Description:
# Returns true gh robust gh kurtosis
# Arguments:
# beta - a numeric value, the location parameter
# delta - a numeric value, the scale parameter
# mu - a numeric value, the first shape parameter
# nu - a numeric value, the second parameter
# FUNCTION:
# gh Robust Kurtosis:
Q = numeric()
for (p in (1:7)/8) Q = c(Q, qgh(p, alpha, beta, delta, mu, lambda=1))
kurt = c(KURT = (Q[[7]] - Q[[5]] + Q[[3]] - Q[[1]]) / (Q[[6]] - Q[[2]]))
# Return Value:
kurt
}
################################################################################
|