File: dist-normRobMoments.R

package info (click to toggle)
fbasics 4041.97-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,016 kB
  • sloc: ansic: 740; makefile: 14
file content (137 lines) | stat: -rw-r--r-- 3,740 bytes parent folder | download | duplicates (8)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General 
# Public License along with this library; if not, write to the 
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston, 
# MA  02111-1307  USA


################################################################################
# FUNCTION:           DESCRIPTION:
#  normMED               Returns true normal median
#  normIQR               Returns true normal inter quartal range
#  normSKEW              Returns true normal robust skewness
#  normKURT              Returns true normal robust kurtosis
################################################################################
 

normMED <-  
function(mean =0, sd = 1) 
{
    # A function implemented by Diethelm Wuertz 
    
    # Description:
    #   Returns true gh median
    
    # Arguments:
    #   mean - a numeric value, the location parameter
    #   sd - a numeric value, the scale parameter
    
    # FUNCTION:
    
    # Median:
    Q = qnorm(p=0.5, mean, sd)  
    med = c(MED = Q) 
    
    # Return Value:
    med
}
  

# ------------------------------------------------------------------------------
 
    
normIQR <- 
function(mean=0, sd=1) 
{
    # A function implemented by Diethelm Wuertz 
    
    # Description:
    #   Returns true gh inter quartal range
    
    # Arguments:
    #   mean - a numeric value, the location parameter
    #   sd - a numeric value, the scale parameter
 
    # FUNCTION:
    
    # Inter Quartile Range:
    Q = numeric()
    Q[1] = qnorm(p=0.25, mean, sd)  
    Q[2] = qnorm(p=0.75, mean, sd) 
    iqr = c(IQR = Q[[2]] - Q[[1]]) 
    
    # Return Value:
    iqr
}
 

# ------------------------------------------------------------------------------
 
  
normSKEW <- 
function(mean=0, sd=1) 
{
    # A function implemented by Diethelm Wuertz 
    
    # Description:
    #   Returns true gh robust gh skewness
    
    # Arguments:
    #   mean - a numeric value, the location parameter
    #   sd - a numeric value, the scale parameter
    
    # FUNCTION:
    
    # Robust Skewness:
    Q = numeric()
    Q[1] = qnorm(p=0.25, mean, sd)
    Q[2] = qnorm(p=0.50, mean, sd) 
    Q[3] = qnorm(p=0.75, mean, sd)
    skew = c(SKEW = ( Q[[3]] + Q[[1]] - 2* Q[[2]] ) / (Q[[3]] - Q[[1]] ) ) 
    
    # Return Value:
    skew
}
   

# ------------------------------------------------------------------------------
 

normKURT <- 
function(mean=0, sd=1) 
{
    # A function implemented by Diethelm Wuertz 
    
    # Description:
    #   Returns true gh robust gh kurtosis
    
    # Arguments:
    #   mean - a numeric value, the location parameter
    #   sd - a numeric value, the scale parameter
    #   mu - a numeric value, the first shape parameter
    #   nu - a numeric value, the second parameter
    
    # FUNCTION:
    
    # Robust Kurtosis:
    Q = numeric()
    for (p in (1:7)/8) Q = c(Q, qnorm(p, mean, sd))
    kurt = c(KURT = (Q[[7]] - Q[[5]] + Q[[3]] - Q[[1]]) / (Q[[6]] - Q[[2]])) 
    
    # Return Value:
    kurt
}


################################################################################