File: matrix-posDefinite.R

package info (click to toggle)
fbasics 4041.97-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,016 kB
  • sloc: ansic: 740; makefile: 14
file content (156 lines) | stat: -rw-r--r-- 4,081 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA


################################################################################
# FUNCTION:                 DESCRIPTION:
#  isPositiveDefinite        Checks if the matrix X is positive definite
#  makePositiveDefinite      Forces the matrix x to be positive definite
################################################################################


isPositiveDefinite <-
function(x)
{
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Checks if the matrix x is positive definite

    # Arguments:
    #   x - a symmetric matrix or any other rectangular object
    #       describing a covariance matrix which can be converted into
    #       a matrix by the function 'as.matrix'.

    # FUNCTION:

    # Transform:
    x = as.matrix(x)

    # Check if matrix is positive definite:
    ans = .is.positive.definite(m = x)

    # Return Value:
    ans
}


# ------------------------------------------------------------------------------


.is.positive.definite <-
function(m, tol, method = c("eigen", "chol"))
{
    # Author:
    #   Copyright 2003-05 Korbinian Strimmer
    #   Rank, condition, and positive definiteness of a matrix
    #   GNU General Public License, Version 2

    method = match.arg(method)
    if (!is.matrix(m)) {
        m = as.matrix(m)
    }
    if (method == "eigen") {
        eval = eigen(m, only.values = TRUE)$values
        if( missing(tol) ) {
            tol = max(dim(m))*max(abs(eval))*.Machine$double.eps
        }
        if (sum(eval > tol) == length(eval)) {
            return(TRUE)
        } else {
            return(FALSE)
        }
    } else if (method == "chol") {
        val = try(chol(m), silent = TRUE)
        if (inherits(val, "try-error")) {
            return(FALSE)
        } else {
            return(TRUE)
        }
    }
}


# ------------------------------------------------------------------------------


makePositiveDefinite <-
function(x)
{
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Forces the matrix x to be positive definite

    # Arguments:
    #   x - a symmetric matrix or any other rectangular object
    #       describing a covariance matrix which can be converted into
    #       a matrix by the function 'as.matrix'.

    # FUNCTION:

    # Make Positive Definite:
    ans = .make.positive.definite(m = x)

    # Return Value:
    ans
}


# ------------------------------------------------------------------------------


.make.positive.definite <-
function(m, tol)
{
    # Author:
    #   Copyright 2003-05 Korbinian Strimmer
    #   Rank, condition, and positive definiteness of a matrix
    #   GNU General Public License, Version 2

    # Method by Higham 1988

    if (!is.matrix(m)) {
        m = as.matrix(m)
    }

    d = dim(m)[1]
    if ( dim(m)[2] != d ) {
        stop("Input matrix is not square!")
    }

    es = eigen(m)
    esv = es$values

    if (missing(tol)) {
        tol = d*max(abs(esv))*.Machine$double.eps
    }
    delta =  2*tol
        # factor two is just to make sure the resulting
        # matrix passes all numerical tests of positive definiteness

    tau = pmax(0, delta - esv)
    dm = es$vectors %*% diag(tau, d) %*% t(es$vectors)

    # print(max(DA))
    # print(esv[1]/delta)

    return( m + dm )
}


################################################################################