File: test-locationTest.R

package info (click to toggle)
fbasics 4041.97-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 3,016 kB
  • sloc: ansic: 740; makefile: 14
file content (262 lines) | stat: -rw-r--r-- 7,609 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262

# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA  02111-1307  USA


################################################################################
# FUNCTION:             LOCATION TESTS:
#  locationTest          Performs locations tests on two samples
#  .tTest                Unpaired t test for differences in mean
#  .kw2Test              Kruskal-Wallis test for differences in locations
################################################################################


locationTest <-
function(x, y, method = c("t", "kw2"),
    title = NULL, description = NULL)
{
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Correlation Tests

    # FUNCTION:

    # Test:
    method = match.arg(method)
    if (method == "t") {
        ans = .tTest(x, y, title = title, description = description)
    }
    if (method == "kw2") {
        ans = .kw2Test(x, y, title = title, description = description)
    }

    # Return Value:
    ans
}


# ------------------------------------------------------------------------------


.tTest <-
function(x, y, title = NULL, description = NULL)
{
    # A function implemented by Diethelm Wuertz

    # Description:
    #    Tests if two population means are equal.

    # Arguments:
    #   x, y - two numeric vector of data values or time series objects
    #   description - a brief description of the porject of type character.
    #   title - a character string which allows for a project title.

    # FUNCTION:

    # Call:
    call = match.call()

    # Test:
    test = list()

    # Data Set Name:
    DNAME = paste(deparse(substitute(x)), "and", deparse(substitute(y)))
    test$data.name = DNAME

    # Convert Type:
    x = as.vector(x)
    y = as.vector(y)

    # Asymptotic Test:
    two.sided = t.test(x = x, y = y, alternative = "two.sided",
        mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95)
    less = t.test(x = x, y = y, alternative = "less",
        mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95)
    greater = t.test(x = x, y = y, alternative = "greater",
        mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95)

    # Assume Equal Variances:
    two.sided.equal = t.test(x = x, y = y, alternative = "two.sided",
        mu = 0, paired = FALSE, var.equal = TRUE, conf.level = 0.95)
    less.equal = t.test(x = x, y = y, alternative = "less",
        mu = 0, paired = FALSE, var.equal = TRUE, conf.level = 0.95)
    greater.equal = t.test(x = x, y = y, alternative = "greater",
        mu = 0, paired = FALSE, var.equal = TRUE, conf.level = 0.95)

    # Sample Estimates:
    PARAMETER = c(length(x), length(y), 0)
    names(PARAMETER) = c(
        "x Observations",
        "y Observations",
        "mu")
    test$parameter = PARAMETER

    # Sample Estimates:
    ESTIMATE = c(two.sided$estimate, var(x), var(y))
    names(ESTIMATE) = c("Mean of x", "Mean of y", "Var  of x", "Var  of y")
    test$estimate = ESTIMATE

    # P Values:
    PVAL = c(
        two.sided$p.value,
        less$p.value,
        greater$p.value,
        two.sided.equal$p.value,
        less.equal$p.value,
        greater.equal$p.value)
    names(PVAL) = c(
        "Alternative Two-Sided",
        "Alternative      Less",
        "Alternative   Greater",
        "Alternative Two-Sided | Equal Var",
        "Alternative      Less | Equal Var",
        "Alternative   Greater | Equal Var")
    test$p.value = PVAL

    # Statistic:
    STATISTIC = c(
        two.sided$statistic,
        two.sided.equal$statistic)
    names(STATISTIC) = c(
        "            T",
        "T | Equal Var")
    test$statistic = STATISTIC

    # Confidence Intervals:
    CONF.INT = cbind(
        a = two.sided$conf.int,
        b = less$conf.int,
        c = greater$conf.int,
        d = two.sided.equal$conf.int,
        e = less.equal$conf.int,
        f = greater.equal$conf.int)
    # For Splus compatibility use named a CONF.INT
    # and dimnames instead of colnames!
    dimnames(CONF.INT)[[2]] = c(
        "Two-Sided",
        "     Less",
        "  Greater",
        "Two-Sided | Equal Var",
        "     Less | Equal Var",
        "  Greater | Equal Var")
    test$conf.int = CONF.INT

    # Add:
    if (is.null(title)) title = "t Test"
    if (is.null(description)) description = ""

    # Return Value:
    new("fHTEST",
        call = call,
        data = list(x = x, y = y),
        test = test,
        title = as.character(title),
        description = as.character(description) )
}


# ------------------------------------------------------------------------------


.kw2Test <-
function(x, y, title = NULL, description = NULL)
{
    # A function implemented by Diethelm Wuertz

    # Description:
    #   Performs a Kruskal-Wallis rank sum test of the null that
    #   the location parameters of the distribution of x are the
    #   same in each group (sample). The alternative is that they
    #   differ in at least one.

    # Arguments:
    #   x, y - two numeric vector of data values or time series objects
    #   description - a brief description of the porject of type character.
    #   title - a character string which allows for a project title.

    # Note:
    #   A function linked to "stats"

    # FUNCTION:

    # Call:
    call = match.call()

    # Test:
    test = list()

    # Data Set Name:
    DNAME = paste(deparse(substitute(x)), "and", deparse(substitute(y)))
    test$data.name = DNAME

    # Convert Type:
    x = as.vector(x)
    y = as.vector(y)

    # Sample Estimates:
    ESTIMATE = c(mean(x), mean(y), var(x), var(y))
    names(ESTIMATE) = c("Mean of x", "Mean of y", "Var  of x", "Var  of y")
    test$estimate = ESTIMATE

    # Parameter:
    PARAMETER = c(length(x), length(y))
    names(PARAMETER) = c(
        "x Observations",
        "y Observations")
    test$parameter = PARAMETER

    # Operate on Lists:
    x = list(x = x, y = y)
    if (length(x) < 2) stop("x must be a list with at least 2 elements")
    k = length(x)
    l = sapply(x, "length")
    g = factor(rep(1 : k, l))
    x = unlist(x)

    # Test:
    n = length(x)
    if (n < 2) stop("not enough observations")
    r = rank(x)
    TIES = table(x)

    # Statistic:
    STATISTIC = sum(tapply(r, g, "sum")^2 / tapply(r, g, "length"))
    STATISTIC = ((12 * STATISTIC / (n * (n + 1)) - 3 * (n + 1)) /
        (1 - sum(TIES^3 - TIES) / (n^3 - n)))
    names(STATISTIC) = "KW chi-squared"
    test$statistic = STATISTIC

    # P Value:
    PVAL = 1 - pchisq(STATISTIC, 1)
    names(PVAL) = ""
    test$p.value = PVAL

    # Add:
    if(is.null(title)) title = "Kruskal-Wallis Two Sample Test"
    if(is.null(description)) description = ""

    # Return Value:
    new("fHTEST",
        call = call,
        data = list(x = x, y = y),
        test = test,
        title = as.character(title),
        description = as.character(description) )
}


################################################################################