1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
################################################################################
# FUNCTION: LOCATION TESTS:
# locationTest Performs locations tests on two samples
# .tTest Unpaired t test for differences in mean
# .kw2Test Kruskal-Wallis test for differences in locations
################################################################################
locationTest <-
function(x, y, method = c("t", "kw2"),
title = NULL, description = NULL)
{
# A function implemented by Diethelm Wuertz
# Description:
# Correlation Tests
# FUNCTION:
# Test:
method = match.arg(method)
if (method == "t") {
ans = .tTest(x, y, title = title, description = description)
}
if (method == "kw2") {
ans = .kw2Test(x, y, title = title, description = description)
}
# Return Value:
ans
}
# ------------------------------------------------------------------------------
.tTest <-
function(x, y, title = NULL, description = NULL)
{
# A function implemented by Diethelm Wuertz
# Description:
# Tests if two population means are equal.
# Arguments:
# x, y - two numeric vector of data values or time series objects
# description - a brief description of the porject of type character.
# title - a character string which allows for a project title.
# FUNCTION:
# Call:
call = match.call()
# Test:
test = list()
# Data Set Name:
DNAME = paste(deparse(substitute(x)), "and", deparse(substitute(y)))
test$data.name = DNAME
# Convert Type:
x = as.vector(x)
y = as.vector(y)
# Asymptotic Test:
two.sided = t.test(x = x, y = y, alternative = "two.sided",
mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95)
less = t.test(x = x, y = y, alternative = "less",
mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95)
greater = t.test(x = x, y = y, alternative = "greater",
mu = 0, paired = FALSE, var.equal = FALSE, conf.level = 0.95)
# Assume Equal Variances:
two.sided.equal = t.test(x = x, y = y, alternative = "two.sided",
mu = 0, paired = FALSE, var.equal = TRUE, conf.level = 0.95)
less.equal = t.test(x = x, y = y, alternative = "less",
mu = 0, paired = FALSE, var.equal = TRUE, conf.level = 0.95)
greater.equal = t.test(x = x, y = y, alternative = "greater",
mu = 0, paired = FALSE, var.equal = TRUE, conf.level = 0.95)
# Sample Estimates:
PARAMETER = c(length(x), length(y), 0)
names(PARAMETER) = c(
"x Observations",
"y Observations",
"mu")
test$parameter = PARAMETER
# Sample Estimates:
ESTIMATE = c(two.sided$estimate, var(x), var(y))
names(ESTIMATE) = c("Mean of x", "Mean of y", "Var of x", "Var of y")
test$estimate = ESTIMATE
# P Values:
PVAL = c(
two.sided$p.value,
less$p.value,
greater$p.value,
two.sided.equal$p.value,
less.equal$p.value,
greater.equal$p.value)
names(PVAL) = c(
"Alternative Two-Sided",
"Alternative Less",
"Alternative Greater",
"Alternative Two-Sided | Equal Var",
"Alternative Less | Equal Var",
"Alternative Greater | Equal Var")
test$p.value = PVAL
# Statistic:
STATISTIC = c(
two.sided$statistic,
two.sided.equal$statistic)
names(STATISTIC) = c(
" T",
"T | Equal Var")
test$statistic = STATISTIC
# Confidence Intervals:
CONF.INT = cbind(
a = two.sided$conf.int,
b = less$conf.int,
c = greater$conf.int,
d = two.sided.equal$conf.int,
e = less.equal$conf.int,
f = greater.equal$conf.int)
# For Splus compatibility use named a CONF.INT
# and dimnames instead of colnames!
dimnames(CONF.INT)[[2]] = c(
"Two-Sided",
" Less",
" Greater",
"Two-Sided | Equal Var",
" Less | Equal Var",
" Greater | Equal Var")
test$conf.int = CONF.INT
# Add:
if (is.null(title)) title = "t Test"
if (is.null(description)) description = ""
# Return Value:
new("fHTEST",
call = call,
data = list(x = x, y = y),
test = test,
title = as.character(title),
description = as.character(description) )
}
# ------------------------------------------------------------------------------
.kw2Test <-
function(x, y, title = NULL, description = NULL)
{
# A function implemented by Diethelm Wuertz
# Description:
# Performs a Kruskal-Wallis rank sum test of the null that
# the location parameters of the distribution of x are the
# same in each group (sample). The alternative is that they
# differ in at least one.
# Arguments:
# x, y - two numeric vector of data values or time series objects
# description - a brief description of the porject of type character.
# title - a character string which allows for a project title.
# Note:
# A function linked to "stats"
# FUNCTION:
# Call:
call = match.call()
# Test:
test = list()
# Data Set Name:
DNAME = paste(deparse(substitute(x)), "and", deparse(substitute(y)))
test$data.name = DNAME
# Convert Type:
x = as.vector(x)
y = as.vector(y)
# Sample Estimates:
ESTIMATE = c(mean(x), mean(y), var(x), var(y))
names(ESTIMATE) = c("Mean of x", "Mean of y", "Var of x", "Var of y")
test$estimate = ESTIMATE
# Parameter:
PARAMETER = c(length(x), length(y))
names(PARAMETER) = c(
"x Observations",
"y Observations")
test$parameter = PARAMETER
# Operate on Lists:
x = list(x = x, y = y)
if (length(x) < 2) stop("x must be a list with at least 2 elements")
k = length(x)
l = sapply(x, "length")
g = factor(rep(1 : k, l))
x = unlist(x)
# Test:
n = length(x)
if (n < 2) stop("not enough observations")
r = rank(x)
TIES = table(x)
# Statistic:
STATISTIC = sum(tapply(r, g, "sum")^2 / tapply(r, g, "length"))
STATISTIC = ((12 * STATISTIC / (n * (n + 1)) - 3 * (n + 1)) /
(1 - sum(TIES^3 - TIES) / (n^3 - n)))
names(STATISTIC) = "KW chi-squared"
test$statistic = STATISTIC
# P Value:
PVAL = 1 - pchisq(STATISTIC, 1)
names(PVAL) = ""
test$p.value = PVAL
# Add:
if(is.null(title)) title = "Kruskal-Wallis Two Sample Test"
if(is.null(description)) description = ""
# Return Value:
new("fHTEST",
call = call,
data = list(x = x, y = y),
test = test,
title = as.character(title),
description = as.character(description) )
}
################################################################################
|