1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317
|
# This library is free software; you can redistribute it and/or
# modify it under the terms of the GNU Library General Public
# License as published by the Free Software Foundation; either
# version 2 of the License, or (at your option) any later version.
#
# This library is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU Library General Public License for more details.
#
# You should have received a copy of the GNU Library General
# Public License along with this library; if not, write to the
# Free Foundation, Inc., 59 Temple Place, Suite 330, Boston,
# MA 02111-1307 USA
# Copyrights (C)
# for this R-port:
# 1999 - 2008, Diethelm Wuertz, Rmetrics Foundation, GPL
# Diethelm Wuertz <wuertz@itp.phys.ethz.ch>
# www.rmetrics.org
# for the code accessed (or partly included) from other R-ports:
# see R's copyright and license files
# for the code accessed (or partly included) from contributed R-ports
# and other sources
# see Rmetrics's copyright file
################################################################################
# GENERATION: DESCRIPTION:
# matrix R Creates a matrix from the given set of values
# diag R Creates a diagonal matrix or extracts diagonals
# triang M Extracs the lower tridiagonal part from a matrix
# Triang M Extracs the upper tridiagonal part from a matrix
# pascal M Creates a Pascal matrix
# hilbert M Creates a Hilbert matrix
# colVec M Creates a column vector from a data vector
# rowVec M Creates a row vector from a data vector
# as.matrix R Attempts to turn its argument into a matrix
# is.matrix R Tests if its argument is a (strict) matrix
# isPositiveDefinite M Checks if the matrix X is positive definite
# makePositiveDefinite M Forces the matrix x to be positive definite
# dimnames R Retrieves or sets the dimnames of an object
# colnames|rownames R Retrieves or sets the row or column names
# colIds|rowIds M ... use alternatively
# colIds<-|rowIds<- M ... for assignments
# SUBSETS: DESCRIPTION:
# dim R Returns the dimension of a matrix object
# ncol|nrow R Counts columns|rows of a matrix object
# length R Counts elements of a matrix object
# "["|"[[" R Subsets a matrix object
# (Arith) R Elementwise Arithmetic: + - * /
# (Lops) R Elementwise logical Ops: > < >= <= == !=
# cbind|rbind R Augments a matrix object by columns|rows
# na.omit R Removes NA from a matrix object
# BASIC STATISTICS: DESCRIPTION:
# var R Returns the variance matrix
# cov R Returns the covariance matrix
# col|rowStats B calculates column|row statistics
# col|rowMeans R calculates column|row means
# col|rowAvgs B calculates column|row averages
# col|rowVars B calculates column|row variances
# col|rowStdevs B calculates column|row standard deviations
# col|rowSkewness B calculates column|row skewness
# col|rowKurtosis B calculates column|row kurtosis
# col|rowCumsums B calculates column|row cumulated sums
# LINEAR ALGEBRA: DESCRIPTION:
# t R Returns the transposed matrix
# det R Returns the determinant of a matrix
# inv M returns the inverse of a matrix, synonyme
# chol2inv R Returns the inverse of a matrix
# norm M returns the norm of a matrix
# rk M returns the rank of a matrix
# tr M returns the trace of a matrix
# %*% R Returns the product of two matrices
# %x% R Returns the Kronecker product
# kron S returns the Kronecker product
# vec M is the operator that stacks a matrix
# vech M is the operator that stacks the lower triangle
# MORE LINEAR ALGEBRA: DESCRIPTION:
# chol R Returns the Cholesky factor matrix
# eigen R Returns eigenvalues and eigenvectors
# svd R Returns the singular value decomposition
# kappa R Returns the condition number of a matrix
# qr R Returns the QR decomposition of a matrix
# solve R Solves a system of linear equations
# backsolve R ... use when the matrix is upper triangular
# forwardsolve R ... use when the matrix is lower triangular
# TIME SERIES DESCRIPTION:
# tslag R Lagged/leading vector/matrix of selected orders
# .tslag1 Internal Function used by tslag
# pdl R Regressor matrix for polynomial distributed lags
# NOTES: WHERE YOU FIND THE FUCTIONS?
# R Basic R Package
# B Rmetrics fBasics Package
# M This Rmetrics fMultivar Package
################################################################################
test.creation =
function()
{
# Create Pascal Matrix:
P = pascal(3)
P
# Create lower triangle matrix
L = triang(P)
L
# Extract diagonal part
diag(P)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.mathOps =
function()
{
# Create Pascal Matrix:
P = pascal(3)
P
# Add/Subtract/Multiply/Divide:
X = P
# Multiply matrix with a constant
3 * X
# Multiply two matrices elementwise
X * P
# Multiplies rows/columns of a matrix by a vector
X %*% diag(P)
diag(P) %*% X
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.subsets =
function()
{
# Create Pascal Matrix:
P = pascal(3)
P
# Operate on Subsets of a Matrix:
n = 3
i = 2
j = 3
D = diag(1:3)
# Return the dimension of a matrix
dim(P)
# Get the last colum of a matrix
P[, ncol(P)]
# Delete a column of a matrix
P[, -i]
# Permute the columns of a matrix
P[c(3, 1, 2), ]
# Augments matrix horizontally
cbind(P, D)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.apply =
function()
{
# Apply a function to all Elements of a Matrix:
# Create Pascal Matrix:
P = pascal(3)
P
# Return square root for each element
sqrt(P)
# Exponentiate the matrix elementwise
exp(P)
# Compute the median of each column
apply(P, 2, "median")
# Test on all elements of a matrix
all( P > 2 )
# test on any element in a matrix
any( P > 2 )
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.moreOperations =
function()
{
# More Matrix Operations:
# Create Pascal Matrix:
P = pascal(3)
P
# Create Diagonal Matrix:
D = diag(1:3)
# Return the product of two matrices
P %*% D
# Return the Kronecker Product
P %x% D
# Return the transposed matrix
t(P)
# Return the inverse of a matrix
inv(P)
# Return the norm of a matrix
norm(P)
# Return the determinante of a matrix
det(P)
# Return the rank of a matrix
rk(P)
# Return trace of a matrix
tr(P)
# Return the variance matrix
var(P)
# Return the covariance matrix
cov(P)
# Stack a matrix
vec(P)
# Stack the lower triangle
vech(P)
# Return Value:
return()
}
# ------------------------------------------------------------------------------
test.linearAlgebra =
function()
{
# More Linear Algebra:
# Create Pascal Matrix:
P = pascal(3)
P
# Example Matrix and Vector
X = P
b = c(1, 2, 3)
# Return the Cholesky factor matrix
chol(X)
# Return eigenvalues and eigenvectors
eigen(X)
# Return the singular value decomposition
svd(X)
# Return the condition number of a matrix
kappa(X)
# Return the QR decomposition of a matrix
qr(X)
# Solve a system of linear equations
# ... use backsolve when the matrix is upper triangular
# ... use forwardsolve when the matrix is lower triangular
solve(X, b)
backsolve(Triang(X), b)
solve(Triang(X), b)
forwardsolve(triang(X), b)
solve(triang(X), b)
# Return Value:
return()
}
################################################################################
|