File: plot-acfPlot.Rd

package info (click to toggle)
fbasics 4052.98-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,020 kB
  • sloc: ansic: 738; makefile: 14
file content (188 lines) | stat: -rw-r--r-- 4,872 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
\name{acfPlot}
\alias{acfPlot}

\alias{pacfPlot}
\alias{teffectPlot}
\alias{lacfPlot}

\concept{acf}
\concept{autocorrelation}
\concept{pacf}
\concept{partial autocorrelation}
\concept{Taylor effect plot}


\title{Autocorrelation function plots}

\description{

  Produce plots of the autocorrelation function (ACF), the partial ACF,
  the lagged ACF, and the Taylor effect plot.

}

\usage{
acfPlot(x, labels = TRUE, \dots)
pacfPlot(x, labels = TRUE, \dots) 

lacfPlot(x, n = 12, lag.max = 20, type = c("returns", "values"),
    labels = TRUE, \dots)

teffectPlot(x, deltas = seq(from = 0.2, to = 3, by = 0.2), lag.max = 10, 
    ymax = NA, standardize = TRUE, labels = TRUE, \dots)
}

\arguments{

  \item{x}{

    an uni- or multivariate time series of class \code{"timeSeries"} or
    any other object which can be transformed by the function
    \code{as.timeSeries()} into an object of class \code{"timeSeries"}.

  }
  \item{labels}{

    a logical value, whether or not x- and y-axes should be
    automatically labeled and a default main title should be added to
    the plot.  By default \code{TRUE}.

  }
  \item{n}{
    an integer value, the number of lags.
  }
  \item{lag.max}{

    maximum lag for which the autocorrelation should be calculated, an
    integer.

  }
  \item{type}{

    a character string which specifies the type of the input series,
    either \code{"returns"} or \code{"values"}. In the case of a return
    series as input, the required value series is computed by cumulating
    the financial returns: \code{exp(colCumsums(x))}

  }
  \item{deltas}{

    the exponents, a numeric vector, by default ranging from 0.2 to 3.0
    in steps of 0.2.

  }
  \item{ymax}{

    maximum y-axis value on plot. If \code{NA}, then the value is
    selected automatically.

  }
  \item{standardize}{

    a logical value. Should the vector \code{x} be standardized?

  }
  \item{\dots}{
    arguments to be passed.
  }
}

\details{
    
  The following plots are described here:
    
  \tabular{ll}{
    \code{acfPlot} \tab autocorrelation function plot, \cr
    \code{pacfPlot} \tab partial autocorrelation function plot, \cr
    \code{lacfPlot} \tab lagged autocorrelation function plot, \cr
    \code{teffectPlot} \tab Taylor effect plot.}

  
  \subsection{Autocorrelation Functions}{

    The functions \code{acfPlot} and \code{pacfPlot}, plot and estimate
    autocorrelation and partial autocorrelation function. The functions
    allow to get a first view on correlations within the time series.
    The functions are synonym function calls for R's \code{acf} and
    \code{pacf} from the the \code{ts} package.
  }

  
  \subsection{Taylor Effect}{

    The "Taylor Effect" describes the fact that absolute returns of
    speculative assets have significant serial correlation over long
    lags. Even more, autocorrelations of absolute returns are typically
    greater than those of squared returns. From these observations the
    Taylor effect states, that that the autocorrelations of absolute
    returns to the the power of \code{delta},
    \code{abs(x-mean(x))^delta} reach their maximum at \code{delta = 1}.
    The function \code{teffect} explores this behaviour. A plot is
    created which shows for each lag (from 1 to \code{max.lag}) the
    autocorrelations as a function of the exponent \code{delta}.  In the
    case that the above formulated hypothesis is supported, all the
    curves should peak at the same value around \code{delta = 1}.
  }    
}

\value{
    
  for \code{acfPlot} and \code{pacfplot},
  an object of class \code{"acf"}, see \code{\link{acf}};
    
  for \code{teffectPlot}, a numeric matrix
  of order \code{deltas} by \code{max.lag} with
  the values of the autocorrelations;
    
  for \code{lacfPlot}, a list with the following two elements:
  \item{Rho}{the autocorrelation function,}
  \item{lagged}{the lagged correlations.}
    
}

\references{

Taylor S.J. (1986); 
    \emph{Modeling Financial Time Series},
    John Wiley and Sons, Chichester.

Ding Z., Granger C.W.J., Engle R.F. (1993); 
    \emph{A long memory property of stock market returns and a new model},
    Journal of Empirical Finance 1, 83.
    
}

\seealso{
  \code{\link{seriesPlot}},
  \code{\link{returnPlot}},
  \code{\link{cumulatedPlot}},
  \code{\link{drawdownPlot}}

  \code{\link{qqnormPlot}},
  \code{\link{qqnigPlot}},
  \code{\link{qqghtPlot}},
  \code{\link{qqgldPlot}}

  \code{\link{histPlot}},
  \code{\link{densityPlot}},
  \code{\link{logDensityPlot}}

  \code{\link{boxPlot}},
  \code{\link{boxPercentilePlot}}

  \code{\link{scalinglawPlot}}

  \code{\link{returnSeriesGUI}}
}
\examples{
## data
data(LPP2005REC, package = "timeSeries")
SPI <- LPP2005REC[, "SPI"]
plot(SPI, type = "l", col = "steelblue", main = "SP500")
abline(h = 0, col = "grey")

## Taylor Effect:
teffectPlot(SPI)
}

\keyword{hplot}