1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116
|
\name{ScalingLawPlot}
\alias{scalinglawPlot}
\title{Scaling law behaviour}
\description{
Evaluates the scaling exponent of a financial return series and plots
the scaling law.
}
\usage{
scalinglawPlot(x, span = ceiling(log(length(x)/252)/log(2)), doplot = TRUE,
labels = TRUE, trace = TRUE, \dots)
}
\arguments{
\item{x}{
an uni- or multivariate return series of class \code{"timeSeries"}
or any other object which can be transformed by the function
\code{as.timeSeries()} into an object of class \code{"timeSeries"}.
}
\item{span}{
an integer value, determines the plot range. The defaault computes
a reasonable number of points for the scaling range, assuming daily
data with 252 business days per year.
}
\item{doplot}{
a logical value. Should a plot be displayed?
}
\item{labels}{
a logical value. Whether or not x- and y-axes should be automatically
labeled and a default main title should be added to the plot.
By default \code{TRUE}.
}
\item{trace}{
a logical value. Should the computation be traced?
}
\item{\dots}{
arguments to be passed to \code{plot}.
}
}
\value{
a list with the following components:
\item{Intercept}{intercept,}
\item{Exponent}{the scaling exponent,}
\item{InverseExponent}{the inverse of the scaling component.}
}
\details{
The function \code{scalinglawPlot} plots the scaling law of financial
time series under aggregation and returns an estimate for the scaling
exponent. The scaling behavior is a very striking effect of the
foreign exchange market and also other markets expressing a regular
structure for the volatility. Considering the average absolute return
over individual data periods one finds a scaling power law which
relates the mean volatility over given time intervals to the size of
these intervals. The power law is in many cases valid over several
orders of magnitude in time. Its exponent usually deviates
significantly from a Gaussian random walk model which implies 1/2.
}
\references{
Taylor S.J. (1986);
\emph{Modeling Financial Time Series},
John Wiley and Sons, Chichester.
}
\author{
Diethelm Wuertz for the Rmetrics \R-port
}
\seealso{
\code{\link{seriesPlot}},
\code{\link{returnPlot}},
\code{\link{cumulatedPlot}},
\code{\link{drawdownPlot}}
\code{\link{qqnormPlot}},
\code{\link{qqnigPlot}},
\code{\link{qqghtPlot}},
\code{\link{qqgldPlot}}
\code{\link{histPlot}},
\code{\link{densityPlot}},
\code{\link{logDensityPlot}}
\code{\link{boxPlot}},
\code{\link{boxPercentilePlot}}
\code{\link{acfPlot}},
\code{\link{pacfPlot}},
\code{\link{teffectPlot}},
\code{\link{lacfPlot}}
\code{\link{returnSeriesGUI}}
}
\examples{
## data
data(LPP2005REC, package = "timeSeries")
SPI <- LPP2005REC[, "SPI"]
plot(SPI, type = "l", col = "steelblue", main = "SP500")
abline(h = 0, col = "grey")
## Scaling Law Effect
scalinglawPlot(SPI)
}
\keyword{hplot}
|