File: plot-scalinglawPlot.Rd

package info (click to toggle)
fbasics 4052.98-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 3,020 kB
  • sloc: ansic: 738; makefile: 14
file content (116 lines) | stat: -rw-r--r-- 2,991 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
\name{ScalingLawPlot}
\alias{scalinglawPlot}


\title{Scaling law behaviour}

\description{

  Evaluates the scaling exponent of a financial return series and plots
  the scaling law.
    
}

\usage{
scalinglawPlot(x, span = ceiling(log(length(x)/252)/log(2)), doplot = TRUE, 
    labels = TRUE, trace = TRUE, \dots)
}

\arguments{
  \item{x}{
    an uni- or multivariate return series of class \code{"timeSeries"} 
    or any other object which can be transformed by the function
    \code{as.timeSeries()} into an object of class \code{"timeSeries"}.
  }
  \item{span}{

    an integer value, determines the plot range.  The defaault computes
    a reasonable number of points for the scaling range, assuming daily
    data with 252 business days per year.

  }
  \item{doplot}{
    a logical value. Should a plot be displayed?
  }
  \item{labels}{
    a logical value. Whether or not x- and y-axes should be automatically 
    labeled and a default main title should be added to the plot.
    By default \code{TRUE}.
  }
  \item{trace}{
    a logical value. Should the computation be traced?
  }
  \item{\dots}{
    arguments to be passed to \code{plot}.
  }
}

\value{
  a list with the following components:
  \item{Intercept}{intercept,}
  \item{Exponent}{the scaling exponent,}
  \item{InverseExponent}{the inverse of the scaling component.}
}

\details{
    
  The function \code{scalinglawPlot} plots the scaling law of financial
  time series under aggregation and returns an estimate for the scaling
  exponent. The scaling behavior is a very striking effect of the
  foreign exchange market and also other markets expressing a regular
  structure for the volatility. Considering the average absolute return
  over individual data periods one finds a scaling power law which
  relates the mean volatility over given time intervals to the size of
  these intervals. The power law is in many cases valid over several
  orders of magnitude in time. Its exponent usually deviates
  significantly from a Gaussian random walk model which implies 1/2.
  
}

\references{
Taylor S.J. (1986); 
    \emph{Modeling Financial Time Series},
    John Wiley and Sons, Chichester.
}

\author{
  Diethelm Wuertz for the Rmetrics \R-port
}

\seealso{
  \code{\link{seriesPlot}},
  \code{\link{returnPlot}},
  \code{\link{cumulatedPlot}},
  \code{\link{drawdownPlot}}

  \code{\link{qqnormPlot}},
  \code{\link{qqnigPlot}},
  \code{\link{qqghtPlot}},
  \code{\link{qqgldPlot}}

  \code{\link{histPlot}},
  \code{\link{densityPlot}},
  \code{\link{logDensityPlot}}

  \code{\link{boxPlot}},
  \code{\link{boxPercentilePlot}}

  \code{\link{acfPlot}},
  \code{\link{pacfPlot}},
  \code{\link{teffectPlot}},
  \code{\link{lacfPlot}}

  \code{\link{returnSeriesGUI}}
}
\examples{
## data
data(LPP2005REC, package = "timeSeries")
SPI <- LPP2005REC[, "SPI"]
plot(SPI, type = "l", col = "steelblue", main = "SP500")
abline(h = 0, col = "grey")

## Scaling Law Effect
scalinglawPlot(SPI)
}

\keyword{hplot}