1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249
|
/*
* Software License Agreement (BSD License)
*
* Copyright (c) 2013-2014, Willow Garage, Inc.
* Copyright (c) 2014-2016, Open Source Robotics Foundation
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
*
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above
* copyright notice, this list of conditions and the following
* disclaimer in the documentation and/or other materials provided
* with the distribution.
* * Neither the name of Open Source Robotics Foundation nor the names of its
* contributors may be used to endorse or promote products derived
* from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
* FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
* COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
* BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
* CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
* ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
* POSSIBILITY OF SUCH DAMAGE.
*/
/** \author Jia Pan */
#ifndef FCL_TEST_LIBSVM_CLASSIFIER_H
#define FCL_TEST_LIBSVM_CLASSIFIER_H
#include "fcl/learning/classifier.h"
#include <libsvm/svm.h>
namespace fcl
{
template<std::size_t N>
class LibSVMClassifier : public SVMClassifier<N>
{
public:
LibSVMClassifier()
{
param.svm_type = C_SVC;
param.kernel_type = RBF;
param.degree = 3;
param.gamma = 0; // 1/num_features
param.coef0 = 0;
param.nu = 0.5;
param.cache_size = 100; // can change
param.C = 1;
param.eps = 1e-3;
param.p = 0.1;
param.shrinking = 1; // use shrinking
param.probability = 0;
param.nr_weight = 0;
param.weight_label = NULL;
param.weight = NULL;
param.nr_weight = 2;
param.weight_label = (int *)realloc(param.weight_label, sizeof(int) * param.nr_weight);
param.weight = (double *)realloc(param.weight, sizeof(double) * param.nr_weight);
param.weight_label[0] = -1;
param.weight_label[1] = 1;
param.weight[0] = 1;
param.weight[1] = 1;
model = NULL;
x_space = NULL;
problem.x = NULL;
problem.y = NULL;
problem.W = NULL;
}
void setCSVM() { param.svm_type = C_SVC; }
void setNuSVM() { param.svm_type = NU_SVC; }
void setC(FCL_REAL C) { param.C = C; }
void setNu(FCL_REAL nu) { param.nu = nu; }
void setLinearClassifier() { param.kernel_type = LINEAR; }
void setNonLinearClassifier() { param.kernel_type = RBF; }
void setProbability(bool use_probability) { param.probability = use_probability; }
virtual void setScaler(const Scaler<N>& scaler_)
{
scaler = scaler_;
}
void setNegativeWeight(FCL_REAL c)
{
param.weight[0] = c;
}
void setPositiveWeight(FCL_REAL c)
{
param.weight[1] = c;
}
void setEPS(FCL_REAL e)
{
param.eps = e;
}
void setGamma(FCL_REAL gamma)
{
param.gamma = gamma;
}
~LibSVMClassifier()
{
svm_destroy_param(¶m);
svm_free_and_destroy_model(&model);
delete [] x_space;
delete [] problem.x;
delete [] problem.y;
delete [] problem.W;
}
virtual void learn(const std::vector<Item<N> >& data)
{
if(data.size() == 0) return;
if(model) svm_free_and_destroy_model(&model);
if(param.gamma == 0) param.gamma = 1.0 / N;
problem.l = data.size();
if(problem.y) delete [] problem.y;
problem.y = new double [problem.l];
if(problem.x) delete [] problem.x;
problem.x = new svm_node* [problem.l];
if(problem.W) delete [] problem.W;
problem.W = new double [problem.l];
if(x_space) delete [] x_space;
x_space = new svm_node [(N + 1) * problem.l];
for(std::size_t i = 0; i < data.size(); ++i)
{
svm_node* cur_x_space = x_space + (N + 1) * i;
Vecnf<N> q_scaled = scaler.scale(data[i].q);
for(std::size_t j = 0; j < N; ++j)
{
cur_x_space[j].index = j + 1;
cur_x_space[j].value = q_scaled[j];
}
cur_x_space[N].index = -1;
problem.x[i] = cur_x_space;
problem.y[i] = (data[i].label ? 1 : -1);
problem.W[i] = data[i].w;
}
model = svm_train(&problem, ¶m);
hyperw_normsqr = svm_hyper_w_normsqr_twoclass(model);
}
virtual std::vector<PredictResult> predict(const std::vector<Vecnf<N> >& qs) const
{
std::vector<PredictResult> predict_results;
int nr_class = svm_get_nr_class(model);
double* prob_estimates = NULL;
svm_node* x = (svm_node*)malloc((N + 1) * sizeof(svm_node));
if(param.probability)
prob_estimates = (double*)malloc(nr_class * sizeof(double));
Vecnf<N> v;
for(std::size_t i = 0; i < qs.size(); ++i)
{
v = scaler.scale(qs[i]);
for(std::size_t j = 0; j < N; ++j)
{
x[j].index = j + 1;
x[j].value = v[j];
}
x[N].index = -1;
double predict_label;
if(param.probability)
{
predict_label = svm_predict_probability(model, x, prob_estimates);
predict_label = (predict_label > 0) ? 1 : 0;
predict_results.push_back(PredictResult(predict_label, *prob_estimates));
}
else
{
predict_label = svm_predict(model, x);
predict_label = (predict_label > 0) ? 1 : 0;
predict_results.push_back(PredictResult(predict_label));
}
}
if(param.probability) free(prob_estimates);
free(x);
return predict_results;
}
virtual PredictResult predict(const Vecnf<N>& q) const
{
return (predict(std::vector<Vecnf<N> >(1, q)))[0];
}
void save(const std::string& filename) const
{
if(model)
svm_save_model(filename.c_str(), model);
}
virtual std::vector<Item<N> > getSupportVectors() const
{
std::vector<Item<N> > results;
Item<N> item;
for(std::size_t i = 0; i < (std::size_t)model->l; ++i)
{
for(std::size_t j = 0; j < N; ++j)
item.q[j] = model->SV[i][j].value;
item.q = scaler.unscale(item.q);
int id = model->sv_indices[i] - 1;
item.label = (problem.y[id] > 0);
results.push_back(item);
}
return results;
}
svm_parameter param;
svm_problem problem;
svm_node* x_space;
svm_model* model;
double hyperw_normsqr;
Scaler<N> scaler;
};
}
#endif
|